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ABSTRACT

Advancements in weather forecast models and their enhanced resolution have led to substantially im-

proved and more realistic-appearing forecasts for some variables. However, traditional verification scores

often indicate poor performance because of the increased small-scale variability so that the true quality of the

forecasts is not always characterized well. As a result, numerous new methods for verifying these forecasts

have been proposed. These new methods can mostly be classified into two overall categories: filtering methods

and displacement methods. The filtering methods can be further delineated into neighborhood and scale

separation, and the displacement methods can be divided into features based and field deformation. Each

method gives considerably more information than the traditional scores, but it is not clear which method(s)

should be used for which purpose.

A verification methods intercomparison project has been established in order to glean a better understanding

of the proposed methods in terms of their various characteristics and to determine what verification questions

each method addresses. The study is ongoing, and preliminary qualitative results for the different approaches

applied to different situations are described here. In particular, the various methods and their basic charac-

teristics, similarities, and differences are described. In addition, several questions are addressed regarding the

application of the methods and the information that they provide. These questions include (i) how the

method(s) inform performance at different scales; (ii) how the methods provide information on location errors;

(iii) whether the methods provide information on intensity errors and distributions; (iv) whether the methods

provide information on structure errors; (v) whether the approaches have the ability to provide information

about hits, misses, and false alarms; (vi) whether the methods do anything that is counterintuitive; (vii) whether

the methods have selectable parameters and how sensitive the results are to parameter selection; (viii) whether

the results can be easily aggregated across multiple cases; (ix) whether the methods can identify timing errors;

and (x) whether confidence intervals and hypothesis tests can be readily computed.

1. Introduction

Small-scale variability in high-resolution weather fore-

casts presents a challenging problem for verifying forecast

performance. Traditional verification scores provide

incomplete information about the quality of a forecast

because they only make comparisons on a point-to-point

basis with no regard to spatial information [Baldwin and

Kain (2006); Casati et al. (2008); see Wilks (2005) and

Jolliffe and Stephenson (2003) for more on traditional

verification scores]. For example, a forecast feature with

the correct size and structure might yield very poor

verification scores if the feature is displaced slightly in

space because it will be penalized once for missing the

observations and again for giving a false alarm; this is

known as the ‘‘double penalty.’’ Higher variability (e.g.,
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as often occurs with higher-resolution forecasts) leads to

a greater likelihood of having a larger amount of small-

scale intensity error. Under such circumstances, this

double penalty can become problematic in judging the

true quality of a forecast. Similarly, because of the spa-

tial coherence of the features, it is likely that a displaced

forecast feature will score better by simply inflating the

forecasted values at each grid point, thereby inflating the

spatial extent of the feature. Baldwin and Kain (2006)

investigated the sensitivity of several commonly used

scores [Gilbert skill score (GSS; also known as the eq-

uitable threat score), true skill score (TSS), odds ratio,

etc.] to changes in event frequency, spatial displace-

ment, and bias. Among their findings, they showed that

the behavior of several scores, including GSS, TSS, and

odds ratio, were highly sensitive to event frequency. For

more frequently occurring events, the scores were found

to be more sensitive to displacement errors.

In response to these undesirable properties of traditional

verification methods when applied to high-resolution fore-

casts, researchers have proposed numerous new verifica-

tion methods. Here, attention is focused on the verification

of gridded forecasts with an observation field that is on the

same grid (though this is not necessary for some methods),

but note that methods that address the verification of

forecasts on one scale against observations on a different

scale do exist (e.g., Tustison et al. 2003).

The majority of the new techniques can be broadly

grouped into four categories, illustrated schematically in

Fig. 1: (i) neighborhood (or fuzzy), (ii) scale separation

(or scale decomposition), (iii) features based (or object

based), and (iv) field deformation. The first two categories

can be more generally described as filtering methods

as both apply a spatial filter to one or both fields (or

sometimes to the difference field), and then calculate

verification statistics on the filtered fields. The filter is

usually applied at progressively coarser scales to provide

information about the scale(s) at which the forecast

has skill. The neighborhood methods apply a smoothing

filter, whereas the scale-separation techniques apply

several single-bandpass spatial filters (Fourier, wavelets,

etc.) so that performance at separate scales can be

evaluated independently.

The features-based and field deformation categories

are similar in that they both try to ‘‘fit’’ the forecast

to the observations as well as possible. They then give

information about how much the forecast field needs to

be manipulated spatially (displacement, rotations, scal-

ing, etc.) and quantify the residual errors to obtain a

more meaningful notion of skill. The primary difference

between the two is that the features-based methods

first identify features of interest (e.g., storm cells), and

analyze each feature separately, whereas the field

deformation approaches analyze the entire field or a

subset thereof. Therefore, the two categories can be

broadly thought of as displacement methods because in

contrast to finding the scale at which the desired skill is

achieved, these methods describe how much spatial

movement is required in order to match the forecast

field to the observed field. Of course, not all of the

methods fall nicely into one of these four categories, and

it is possible for some methods to fit into more than one

category. Discrepancies such as these are pointed out

where appropriate.

Because new spatial verification methods have only

fairly recently been introduced, many of them are not yet

in wide usage. Potential users may be confused as to

which one(s) may be most appropriate for their particular

application. There is a need to analyze their characteris-

tics and determine how they compare to one another.

Specifically, it is important to know the kinds of infor-

mation each method provides [e.g., the verification ques-

tion(s) addressed], the type of data required (regular

grid, normally distributed, etc.), how well suited each

method is for operational or diagnostic use, and whether

different approaches provide similar information but

from different perspectives. It is also important to know

whether a statistical model can be formulated to char-

acterize uncertainty concerning forecast performance,

or failing that, whether a nonparametric method such

as bootstrap resampling can be utilized instead. These

are the impetuses for the spatial verification method

intercomparison project (ICP; information available

online at http://www.ral.ucar.edu/projects/icp/), which is

a metaverification project including many of the re-

searchers who have proposed these methods.1 Specifi-

cally, the goals of the ICP are to critically compare the

various approaches both qualitatively and quantita-

tively, assessing to what extent they provide useful in-

formation beyond that given by traditional verification

methods. The project also seeks to identify differences

and commonalities among the methods, as well as to

characterize the information they provide for certain

well-defined cases. Although the project does not com-

pare every single strategy introduced, it includes a good

fraction of them at the time of writing.

The ICP has made available a number of test cases. The

cases currently being studied include real examples of

quantitative precipitation forecasts and verifying radar–

gauge precipitation analyses, as well as perturbations from

one of these real cases so that results can be compared

1 Participants in the ICP are volunteers who predominantly are

applying their own methods. Anyone is welcome to participate,

however, and may begin by visiting the ICP Web site (given above)

and signing up on the e-mail list.
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with ‘‘known’’ errors. Additionally, some very simple

geometric cases are being used and have, thus far, proven

to be very useful for gaining a better understanding of

the verification methods because of their simple struc-

tures. The geometric, perturbed, and real cases are de-

scribed in detail in Ahijevych et al. (2009, hereafter

AGBE) along with select quantitative results from most

of the methods described herein. These two summary

papers, along with the unabridged papers on each

method, compose this special collection of Weather and

Forecasting.

The next section provides a literature review along with

summary information for the various methods considered

by the ICP. Section 3 compares each method qualita-

tively, based on a series of verification questions aimed

at determining which methods are useful for which types

of users. Finally, section 4 summarizes the methods and

provides some discussion on the goals of the ICP, diffi-

culties associated with such an intercomparison, and

some intuition about which types of methods are best

suited for particular applications.

2. Description and comparison of methods by type

The following subsections give some details about

each of the four general categories of spatial verification

methods. Table 1 provides a list of abbreviations used

here for the individual methods represented in the ICP

along with the general category in which they belong

and some references.

Before discussing the new methods, a review of certain

aspects of traditional verification statistics is presented

(see also Wilks 2005; Jolliffe and Stephenson 2003).

When comparing continuous values (e.g., temperature,

FIG. 1. Schematic representations of the four categories of verification methods reviewed in this paper. (top) The

neighborhood and scale-separation methods can both be considered ‘‘filtering’’ approaches while (bottom) the

feature-based and field deformation methods fall under the ‘‘displacement’’ category.
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relative humidity, precipitation amount) statistics such as

RMSE, mean error, mean absolute error, etc. can be

calculated using forecasts and observations at each grid

point. Alternatively, the values can be categorized into

levels, for example by thresholding, and statistics based

on the resulting contingency tables can be calculated.

The simplest case is a 2 3 2 contingency table (e.g., 24-h

accumulated precipitation less than or equal to 0.1 mm

versus greater than 0.1 mm). In such a case, a hit occurs

at a grid point when an event is correctly predicted (i.e.,

in this case, 24-h accumulated precipitation exceeding

0.1 mm was forecast and it occurred). Similarly, correct

negatives result from correctly forecasting nonevents

(24-h accumulated precipitation less than or equal to

0.1 mm). A false alarm occurs when the forecast pre-

dicts the event, but it does not occur, and a miss is an

observed event that was not forecast. Finally, a correct

negative occurs when no precipitation greater than

0.1 mm is forecast and none occurs. In terms of spatial

verification, one can imagine partially overlapping areas

of forecast and observed rainfall, where the overlap area

represents the hits, the area where rain was observed

but not forecast represents the misses, the area where

rain was forecast but not observed represents the false

alarms, and the area with no rain forecast or observed

represents the correct negatives.

Numerous verification statistics utilize the informa-

tion from such a contingency table. The GSS statistic is

frequently used because it corrects for the number of

hits expected to occur by chance. When the forecast is

unbiased, then higher values of GSS indicate better

forecasts without sensitivity to large numbers of correct

negatives. However, the GSS results are misleading if

the forecast is not unbiased (i.e., the frequency of fore-

cast events is different from the frequency of observed

events). Certainly, if a forecast over- or underpredicts

the spatial extent of the observations, then the forecast is

biased. The bias-corrected GSS introduced by Mesinger

(2008) corrects for this problem by assuming a nonlinear

relationship between false alarms and misses.

a. Neighborhood approaches

The neighborhood (also known as fuzzy) approaches

compare values of forecasts and observations in space–

time neighborhoods relative to a point in the observa-

tion field. Properties of the fields within neighborhoods

TABLE 1. List of individual methods considered in this paper, and the ICP, along with their abbreviations used here. References listed are

not comprehensive; see the text and the references for further representative works.

Abbreviation Description Method type Reference(s)

BCETS Bias-corrected ETS Traditional Mesinger (2008)

CA Cluster analysis Features based* Marzban and Sandgathe (2006, 2008)

Composite Composite method Features based* Nachamkin (2005, 2009)

CRA Contiguous rain area Features based Ebert and McBride (2000);

Ebert and Gallus (2009)

DIST Distributional method Neighborhood Marsigli et al. (2006)

FQI Forecast quality index Field deformation* Venugopal et al. (2005)

FQM–DAS Forecast quality measure–displacement

amplitude score

Field deformation Keil and Craig (2007, 2009)

FSS Fractions skill score Neighborhood Roberts (2005); Roberts and Lean (2008);

Mittermaier and Roberts (2009)

IS Intensity scale Scale separation Casati et al. (2004); Casati (2009)

IW Image warping Field deformation E. Gilleland, J. Lindström, and F. Lindgren

(2009, unpublished manuscript);

Lindström et al. (2009)

MODE Method for Object-based Diagnostic

Evaluation

Features based Davis et al. (2006, 2009)

MSV Multiscale variability Scale separation Zapeda-Arce et al. (2000); Harris et al.

(2001); Mittermaier (2006)

Neighborhood Neighborhood based methods Neighborhood Ebert (2008, 2009)

Procrustes Cell identification and Procrustes

shape analysis

Features based Micheas et al. (2007)

Procrustes2 Multiscale cell identification

and Procrustes shape analysis

Scale separation–Features

based

Lack et al. (2009)

SAL Structure, amplitude, and location Features based Wernli et al. (2008, 2009)

Traditional Point-based comparison Point Jolliffe and Stephenson (2003)

VGM Variogram Scale separation* Marzban and Sandgathe (2009)

* A method that only loosely belongs to the given method type.
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(e.g., mean, maximum, existence of one or more points

exceeding a certain threshold) are then compared using

various statistical summaries, which are often simply the

traditional verification statistics. Such comparisons are

typically done for incrementally larger neighborhoods

so that it is possible to determine the scale at which a

desired level of skill is attained by the forecast. The top-

left panel in Fig. 1 depicts this general idea by showing a

field that has been upscaled by averaging the values of

neighbors of grid points within a certain radius of each

other. The result is a smoothed version of the original

field. Summary statistics, such as traditional verification

statistics, can be applied to the smoothed field. The

process is typically repeated using increasingly larger

neighborhoods.

Several independently developed techniques were sum-

marized and interpreted into a common framework by

Ebert (2008). Among some of the qualitative advan-

tages of these approaches are (i) the parsimony of the

techniques, (ii) the use of many of the familiar tradi-

tional scores, (iii) the ability to determine at which res-

olutions the forecast performs best, and (iv) reduction of

the double-penalty problem. The particular verification

questions addressed by these procedures depend largely

on the traditional score utilized and how the neighbor-

hoods are aggregated, as well as how the neighborhoods

are defined. A brief summary is given here.

The earliest and perhaps simplest of these methods is

referred to as upscaling, whereby the forecasts and ob-

servations are averaged to consecutively coarser scales

and compared using traditional scores (e.g., Yates et al.

2006; Zepeda-Arce et al. 2000; Weygandt et al. 2004).

One of the disadvantages of upscaling is the loss of

small-scale variability that is crucial for depicting high-

impact events such as extreme wind or precipitation.

This variability may be properly captured by a high-

resolution model, but the high-intensity wind or pre-

cipitation event locations may be displaced slightly from

the observed high-intensity events. Traditional methods

would not give credit for these near misses, but various

neighborhood methods can by preserving the original

grid values and looking in the neighborhood around

each grid point for events.

The fractions skill score (FSS) of Roberts (2005)

and Roberts and Lean (2008) compares the fractional

coverage of events (occurrences of values exceeding a

certain threshold) in windows surrounding the obser-

vations and forecasts (see also Mittermaier and Roberts

2009). Theis et al. (2005) compared the forecast frac-

tional coverage in the neighborhood to the occurrence

of an observed event at a point. Marsigli et al. (2006)

take a more general approach by comparing moments of

the distribution of observations in the neighborhoods

with the moments of the distribution of forecasts in the

neighborhoods. Damrath (2004) utilizes two approaches:

one that employs a proportion threshold within the

neighborhood to determine whether an event has oc-

curred or not, and one that employs a fuzzy logic tech-

nique that defines events as the probabilities themselves.

Scores that evaluate the forecast intensities were proposed

by Germann and Zawadzki (2004) and Rezacova et al.

(2007). Brooks et al. (1998) address the issue of rare-event

verification by comparing the performance of the forecast

to that achieved using a ‘‘practically perfect hindcast’’

obtained by objectively analyzing the observations.

Event frequency can be very sensitive to both thresh-

olds and neighborhood size. For this reason, the neigh-

borhood methods generally consider a range of spatial

resolutions and intensity thresholds. Atger (2001) uses a

multievent contingency table approach that allows for

several intensity thresholds to be evaluated as well as

other dimensions such as spatial or temporal proximity.

b. Scale separation/decomposition

Scale-separation approaches provide information on

forecast performance on distinct scales. The different

scales are obtained with a single-band spatial filter

(Fourier transforms, wavelets, etc.), whereby one in-

vestigates forecast performance by isolating the features

at each scale. These scales are often representative of

physical features, such as large-scale frontal systems

or small-scale convective showers. This is depicted in

the top-right panel in Fig. 1, where the large red blob

represents a large-scale storm system and the graph

with the multicolored blob shows the individual small-

scale storms within the system. The scale-separation

approaches aim to (i) assess the scale dependency of the

error, (ii) determine the skill–no-skill transition scale (i.e.,

assess the scale dependency of the model predictability),

and (iii) assess the capability of the forecast to reproduce

the observed scale structure in the observations.

One important difference between the neighborhood

and scale-separation approaches is that the neighbor-

hood approach essentially smoothes the forecasts over a

range of increasing scales and the filtered fields always

broadly resemble the original field because the large

scale is retained. At the same time, the filtered fields

cannot be combined to reproduce the original field be-

cause the smallest scales are lost in the smoothing pro-

cess. In contrast, the scale-separation approaches treat

each scale independently; the filtered fields may not

resemble the original field, but they may be combined to

reproduce the original field.

Briggs and Levine (1997) introduced the first scale-

separation verification approach using wavelets. They as-

sessed geopotential height fields by decomposing them
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with a 2D wavelet filter, and then evaluating traditional

continuous scores (correlation, ratio of the variances, and

RMSE) for each scale component.

The intensity-scale (IS) technique of Casati et al.

(2004) measures skill as a function of the scales and of

the intensity. Recalibrated forecast and observation

fields are transformed into binary images by thresh-

olding for different intensities, and the point-to-point

difference between the binary fields is taken to obtain

binary error fields. These error fields are subsequently

separated into the sum of different scale components

using a two-dimensional Haar wavelet decomposition,

and a skill score based on the mean squared error of

these images is evaluated for each scale component and

intensity threshold. The result is a Heidke skill score

evaluated at different scales, thereby linking categori-

cal scores with the scale-separation approach. Casati

(2009) modifies this approach by not recalibrating the

forecast field, and subsequently computing the energies

and the relative difference in energy at each scale. This

allows one to assess the bias between the two fields at

different scales.

The wealth of detailed information this method pro-

vides is useful within a diagnostic context, but for oper-

ational verification, a method is needed to condense this

detail into manageable and easy to understand quantities.

To address this need, Mittermaier (2006) expanded the IS

idea by presenting a method for aggregating results for

individual (operational) forecasts produced from the

intensity-scale analysis. The approach was applied to

compare the performance of the 12- and 4-km versions of

the Unified Model against radar rainfall and gridded

gauge analyses. Casati (2009) presents a different ap-

proach for aggregating the IS statistics, and provides

confidence intervals on these statistics using a boot-

strapping approach.

Harris et al. (2001) look at multiscale statistical prop-

erties related to the spatiotemporal scale structure of the

two fields. In particular, forecast performance is inves-

tigated by evaluating the Fourier spectrum, structure

function, and moment-scale analyses. The method differs

from other spectral decomposition methods in that veri-

fication is not performed separately on different scales.

Because the technique investigates the two fields indi-

vidually, information about the marginal distributions is

gleaned rather than the joint distribution, and an assess-

ment can be made on whether the forecast looks realistic

in terms of its scale-dependent spatial properties.

Marzban and Sandgathe (2009) and Marzban et al.

(2009) investigate variogram plots of forecast and ob-

served fields to compare the textures of the fields, which

gives an indication of the similarities–discrepancies of a

marginal distributional property of the two fields. It is

easy to show that the covariance of the coefficients from

a wavelet decomposition implies that the field is a ran-

dom surface also described by a covariance function. The

variogram and covariance are equivalent characteriza-

tions for a random surface that is stationary and Gaus-

sian distributed so that the variogram of the field is also

tied to the covariance of the coefficients of the wavelet

decomposition. In this way the variogram technique is

a type of scale-separation method (cf. Nychka 1998;

Ogden 1996). It should be emphasized, however, that

the variogram approach (VGM), like the Harriss et al.

(2001) approach, investigates distributional properties of

the two fields and, therefore, differs in its aims from those

outlined at the beginning of this section. Finally, VGM

computes the variogram in two different ways by calcu-

lating it (i) on only the nonzero elements of the field and

(ii) on the entire field. The first approach yields infor-

mation on the texture of rain areas, and the second yields

information about size and displacement errors, as well

as the texture of the entire field. When applied to the

entire field, large discrepancies in the spatial extent or

locations of storms can affect the resulting variogram

shape insofar as such differences affect the texture of the

entire field. Because of the sensitivity to size and dis-

placement errors, Marzban and Sandgathe (2009) refer

to VGM as a kind of object-based technique. Here, we

would not classify it as such because it does not identify

individual features. In fact, it is a method that does not fit

well into any of the four categories. It would perhaps be

best categorized into a fifth category of field distribution

methods because it most directly compares a distribu-

tional property of the two fields.

Lack et al. (2009) introduce a new multiscale ap-

proach that overlaps with the features-based approach.

A Fourier transform is used to associate signals within

convection to different spatial scales. A user-defined

weighted cost function is then employed to match ob-

jects, characterize them as being more linear versus

more cellular, and identify matches as hits, misses, or

false alarms. The technique is an advancement of the

method proposed in Micheas et al. (2007), which is dis-

cussed in the next section.

c. Features-based approaches

Numerous methods have been proposed to look spe-

cifically at how well the forecast captures the overall

structure of meteorological features. These methods are

referred to as features-based, object-based, and cell-

identification techniques. The primary differences among

these approaches are how they determine (i) what con-

stitutes a feature, (ii) whether spatially discontinuous

features within a field should be treated as one feature or

separate features, (iii) how they match features from one
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field to the other, and (iv) what sorts of diagnostics

and/or summary measures they produce. Most of the

methods identify features by applying a threshold to the

fields. The general schematic is shown in the bottom-left

panel of Fig. 1, where three features are identified, the

first of which is a merging of two spatially discontinuous

objects. Attributes such as size, shape, and average in-

tensity over each object can be calculated for each in-

dividual object within a forecast or observation field.

Additionally, they can be compared against identified

features in the corresponding field (e.g., based on spatial

proximity), and statistics pertaining to how well these

features compare can be calculated.

The contiguous rain area (CRA) approach of Ebert and

McBride (2000) associates forecast and observed features

that overlap. [To associate features that are close but not

touching, the features can be smoothed before check-

ing for overlap; see Ebert and Gallus (2009)]. Optimal

matching is attained by translating the forecast until a

pattern-matching criterion is met (e.g., minimum squared

error or maximum correlation between the gridpoint

values in the observed and forecast features). Displace-

ment, volume, and pattern errors are found as a natural

consequence of this procedure, and their contributions to

the total error can be quantified. Various modifications to

this approach have been proposed to fine-tune it for short-

period forecasts (e.g., Ebert et al. 2004; Grams et al. 2006).

Baldwin and Lakshmivarahan (2003) present a features-

based technique aimed at discriminating between three

phenomena in a rainfall field: linear, cellular, and strati-

form precipitation. The technique is multifaceted with an

initial step involving a hierarchical statistical clustering

analysis to isolate stratiform events. To distinguish be-

tween cellular and linear events, they employ techniques

from geostatistics, in particular the correlogram. Prin-

cipal component analysis is then employed to determine

attributes that provide unique information on the re-

sulting correlation matrix.

The method developed by Davis et al. (2006), now

called the Method for Object-based Diagnostic Evalua-

tion (MODE), addresses feature identification not solely

by applying an intensity threshold to the field, but also

by a convolution procedure whereby the fields are first

smoothed over space and then thresholded. Once con-

tiguous nonzero pixels (i.e., features) are identified, they

are merged and matched by an algorithm utilizing in-

formation about various attributes (e.g., centroid posi-

tion, total area, area overlap, intensity distribution,

orientation angle, and boundary separation). Gilleland

et al. (2008) propose an alternative method for merging

and matching features for MODE based solely on a

binary image distance measure, known as Baddeley’s

D metric. Another simple option is the partial Hausdorff

distance (Venugopal et al. 2005). MODE assigns user-

defined weights and confidence to these attributes and

combines them in a fuzzy logic algorithm to produce a

total interest for each feature pair. To get a represen-

tative total interest value over all pairs, Davis et al.

(2009) devised a metric called the median of the maxi-

mum interest. This measure summarizes all of the total

interest values for each combination of forecast feature

and observed feature into a single number.

Nachamkin (2004) uses composites of wind events to

examine the distribution of forecasted events relative

to those observed, and vice versa. Nachamkin et al.

(2005) perform the technique for precipitation fields,

and Nachamkin (2009) applies the procedure to the ICP

test cases. Events are defined as spatially contiguous

regions of precipitation intensities or amounts above a

particular threshold. The method first identifies all of the

observed rainfall events, centers them on a common

grid, and composites them. Differences between the

observed composite and the corresponding forecasted

rainfall composite give clues about the model’s tendency

to overforecast, underforecast, and misplace precipita-

tion events. The converse approach is also employed,

whereby one obtains the conditional distribution of ob-

served precipitation given that a forecast event occurred.

In Nachamkin (2004), evidence from this verification

technique pointed to shortcomings in the model’s con-

vective parameterization scheme. We classify this ap-

proach as features based because it identifies individual

features, but it does not provide information about indi-

vidual features. Similar to the VGM approach, it might be

better classified into a fifth category of field distribution.

The technique proposed by Marzban and Sandgathe

(2006, 2008) applies hierarchical statistical cluster anal-

yses whereby features are identified by clusters at each

iteration of the procedure. Verification measures such

as the critical success index are calculated by defining

hits, misses, and false alarms based on the proximity of

clusters between the two fields using a distance metric.

In Marzban and Sandgathe (2006), clustering is per-

formed on the combined fields while keeping informa-

tion about the separate fields (or underlying clusters)

intact. The cluster approaches are roughly similar to the

neighborhood methods in the sense that a cluster defines

a neighborhood, and the number of clusters determines

the scale.

Micheas et al. (2007) propose a technique for verifi-

cation of cell forecasts (referred to here as Procrustes).

Features (or cells) are identified by finding clusters of

nonzero pixels meeting a user-defined size criterion

(e.g., four or more pixels). Matching is carried out based

on centroid distances (location) or a shape criterion of

the observed and forecasted features. The procedure
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requires there to be the same number of cells in each

field. Consequently, some features in one field may be

matched to multiple features in the other, yielding a

higher penalty for the over- or underforecasting of cells.

Procrustes shape analysis and a user-defined penalty

function are subsequently employed to glean informa-

tion about forecast performance in terms of rotation,

dilation, translation, and intensity-based errors over the

entire forecast domain. Lack et al. (2009) modify this

approach in several ways. In particular, they employ a

multiscale technique for identifying objects, which is a

large departure from other features-based approaches.

Additionally, they employ cell-by-cell verification met-

rics along with summary statistics of forecast and ob-

served objects. We shall refer to this modified approach

as Procrustes2 hereafter.

Wernli et al. (2008, 2009) take a different approach to

features-based verification. They define features within

a relatively small area of interest such as a hydrological

watershed, but no merging or matching of features in

the forecast and observation fields is necessary. Their

method, referred to as SAL (for structure, amplitude,

and location), considers these three distinct components

defined so that a perfect forecast would yield values of

zero for all three. The approach has the advantage of

providing useful, but parsimonious information about

forecast performance when compared with the other

features-based techniques.

Other features-based methods include cyclone-

tracking techniques (e.g., Templeton and Keenan 1982;

Marchok 2002), which gave inspiration to some of the

features-based techniques described here. These methods

are not discussed further here, however, because the

emphasis of this special collection is on the verification of

quantitative precipitation forecasts.

d. Field deformation verification

Some of the earliest proposed techniques for verifying

gridded forecast–observation fields fall under the cate-

gory of field deformation verification (e.g., Hoffman

et al. 1995; Alexander et al. 1999). The field deforma-

tion, or morphing, approaches essentially involve spatial

manipulation of the forecast field to make it appear as

much like the observation field as possible (e.g., to

minimize a score such as RMSE). They produce a field

of distortion vectors (see Fig. 1, bottom-right panel),

which is then evaluated either diagnostically or analyt-

ically. As mentioned previously, most of the techniques

described in this section could be applied to individual

features and subsequently, used within the framework of

the features-based methods. Conversely, as was done in

earlier papers (e.g., Alexander et al. 1999), it is possible

to attempt to identify features in a field in order to in-

form the procedures as to optimal movements. There-

fore, the primary distinction we make between the

features-based and field deformation methods is that the

field deformation techniques primarily work on an en-

tire field (or subfield) at once instead of identifying and

describing individual feature-to-feature comparisons

within a field. This is illustrated in Fig. 1 by the vector

field applied to the entire region in the lower-right panel

versus the individual features in the panel to the left.

Keil and Craig (2007, 2009) employ a kind of non-

parametric image warp that is very similar to optical

flow, which combines the magnitude of a displacement

vector determined by a pyramidal matching algorithm

and the local squared difference of observed and morphed

forecast intensity fields. Forecast performance informa-

tion is summarized by a metric incorporating the amount

of movement and amplitude change. This is referred to as

the forecast quality measure (FQM) in Keil and Craig

(2007) and a modified version, intended to replace FQM,

is called the displacement and amplitude score (DAS) in

Keil and Craig (2009). The modification in DAS allows

false alarms to be handled correctly, where the FQM

does not. Marzban et al. (2009) investigate the use of

optical flow techniques for verification purposes and

propose a method for summarizing the resulting vector

fields. The method of Nehrkorn et al. (2003) distorts the

forecast field using a technique referred to as feature

calibration and alignment (FCA), which is perhaps more

closely related to the scale-separation techniques, but

does involve a distortion of the entire forecast field to

better match the observed field. Dickinson and Brown

(1996) and Alexander et al. (1999) applied image warp-

ing techniques using polynomial warp functions. Image

warping requires the selection of control points (also

called landmarks or tie points). Dickinson and Brown

(1996) chose their control points automatically using

covariate information, whereas Alexander et al. (1999)

manually selected them to match important features

and ensure physically meaningful warps. J. Lindström,

E. Gilleland, and F. Lindgren (2009, unpublished man-

uscript, hereafter LGL) use a similar technique, but do

not attempt to identify features for the control points;

they also use a thin-plate spline instead of polynomial

functions for the warping function. They found that in-

formative warps are determined using a relatively small

number of regularly spaced grid points for control points,

at least for the test cases analyzed so far in the ICP.

Venugopal et al. (2005) introduce an image compar-

ison metric called the forecast quality index (FQI),

which combines both distance between two binary

images (created by thresholding the observation and

forecast fields) and intensity errors. The numerator of
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the index is a measure of distance between two binary

images based on the normalized partial Hausdorff dis-

tance (Huttenlocher et al. 1999) and the denominator is

a measure of the intensity error based on the means and

standard deviations of the nonzero pixels. In producing

the binary images for the partial Hausdorff distance, one

can eliminate pixels with values below a particular in-

tensity and isolate the smaller high-intensity cores. To

avoid dependence on the percentage of nonzero pixels,

the partial Hausdorff distance is normalized by the

mean distance for several stochastic realizations, or

‘‘surrogates,’’ of the truth field. The surrogates have the

same probability density function and spatial correlation

structure as the truth field. Because this technique does

not displace the forecast field to better match the ob-

served field, it is not precisely a field deformation

method. However, it measures a spatial displacement

across the entire field, and this is the reason we classify it

in this category.

3. Verification questions

The primary goal of the ICP is to supply advice con-

cerning the types of information provided by each spatial

verification method on the forecast quality. Some ques-

tions, addressing some specific issues of interest, are

presented in this section, and qualitative answers re-

garding how each technique addresses such issues are

discussed. Some of the answers are also summarized in

Table 2.

a. How do the methods inform about performance at
different scales?

There are at least two potential interpretations of this

question. First, the verification end user might want to

find the spatial scale over which a forecast has a desired

level of skill. The neighborhood methods fall under this

description of scale. The second interpretation of this

question refers to the scales associated with a single-

band spatial filter, where features at each of these scales

are isolated and analyzed. The scale-separation methods

are the only methods detailed here that can account for

this second type of scale performance.

Other ideas of ‘‘scale’’ are implicit in various methods.

For example, Marzban and Sandgathe (2006, 2008) refer

to each iteration (number of clusters) of the hierarchical

cluster analysis method as a scale. As noted earlier, this

is similar to the idea of scale, or resolution, employed

by the neighborhood methods, except that the idea of

neighbors is defined quite differently; the ‘‘filter,’’ for

example, is less of a smoothing filter, and is more similar

to the idea of the features-based methods at this stage,

which is why it has been categorized as such in this pa-

per. Indeed, most of the features-based methods can

address scale in this sense by identifying features using

varying thresholds or filters, recognizing that higher-

intensity features generally have smaller scales.

Generally, the field deformation approaches do not

address ‘‘scale’’ issues directly, but certainly could be

applied to the fields at different scales. The FQM–DAS

TABLE 2. Summary table of some of the verification questions from section 3. Columns should be interpreted as, ‘‘Can the method(s)

account for, or provide information about . . . .’’

Abbreviation Scales? Location errors? Intensity errors? Structure errors?

Hits, misses, false alarms,

and correct negatives?

BCETS No* Indirectly Yes No Yes

CA Yes (see text) Yes (see text) No* No Yes

Procrustes No* Yes Yes Yes Yes (see text)

Procrustes2 Yes Yes Yes Yes Yes

Composite No* Yes (see text) Average intensities Yes Yes

CRA No* Yes Yes Yes Yes

DIST Yes (see text) Indirectly Yes No Yes

FQI No* Yes Yes No No

FQM–DAS No* Yes Yes Yes Yes (see text)

FSS Yes (see text) Indirectly Yes No Indirectly

IS Yes (see text) Indirectly Yes No Indirectly

IW Yes (see text) Yes Yes No* Yes (see text)

MSV Yes (see text) Indirectly Yes No No

MODE Yes (see text) Yes Yes Yes Yes (see text)

Neighborhood Yes (see text) Indirectly Yes No Yes

SAL No* Yes Yes No No

Traditional No* No Yes No Yes

VGM Yes No (see text) No (see text) Yes* No

* A method that does not directly provide information about the specific topic, but either is sensitive to the type of error, can be easily

modified, or can be applied to different fields (e.g., different thresholds, or resolution fields) to allow for the question to be addressed.
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method of Keil and Craig (2007, 2009) morphs the field

through a series of changes at different resolutions, but

the ultimate score and vector field do not directly inform

about scale performance. For methods such as those in

LGL, the number of control points chosen to define the

warp determines the complexity of the warp so that fewer

points will only give larger-scale information, and more

points yield increasingly finer-scale feedback. Further,

all field deformation methods give information about

‘‘scaling’’ errors in terms of localized divergence and

convergence of the vector field, which can be interpreted

as under- and overforecasting, respectively.2

Features-based methods are not generally designed to

inform about scale errors but can be used in this manner.

For example, they can identify features of different sizes.

MODE identifies features through a spatial smoothing

technique combined with a threshold. Quilt plots showing

various metrics of forecast performance as a function of

the threshold and convolution radius can show how much

the field needs to be smoothed by convolution to provide

skill for any given threshold (i.e., it answers the question

concerning the resolutions at which the forecast has skill

at identifying particular feature attributes). Davis et al.

(2009) use a quilt plot of the median of maximum interest

to examine performance as a function of scale and to find

the combinations of the convolution radius and the

threshold at which a forecast has skill in terms of this

summary measure.

In summary, any proposed method (including the

traditional scores) could potentially provide informa-

tion at different scales by simply applying the method to

the field(s) at different resolutions. The neighborhood

methods explicitly evaluate the forecast’s performance at

different scales. Some of the scale decomposition methods

investigate how well a forecast is able to reproduce the

observed field’s scale structure (namely, Zepeda-Arce

et al. 2000; Harris et al. 2001), whereas the IS approach

assesses the forecast performance at the individual wave-

lengths associated with features of different scales.

b. How do the methods provide information on
location errors?

Location errors are quite common as forecasts are

made on increasingly finer grid resolutions. Traditional

scores do not provide any direct information on these

types of errors. In fact, as mentioned previously, tradi-

tional methods doubly penalize location errors as both

misses and false alarms. Therefore, a major impetus for

developing new verification methods is to obtain diag-

nostic information about location errors. For example,

is the forecast basically correct, but missing the spatial

target by x kilometers? Are there systematic errors in

the forecast locations of storms?

The bias-corrected ETS (BCETS) answers these ques-

tions indirectly by accounting for the effects of bias on

the GSS (i.e., ETS) so that the only remaining influence

is the placement of the forecast. The method does not

provide specific information on displacement amplitude

or direction. The same can be said for scale-separation

methods. Forecasts with more displacement error have

error at larger scales, but quantifying the displacement

is not straightforward and direction is not considered.

AGBE illustrate this with two simple geometric cases.

The features-based and field deformation methods

all directly provide information about location errors,

assuming that the forecast sufficiently resembles the

observations so that corresponding features can be as-

sociated or matched. A possible exception is the CA

method, which allows for location errors but does not

return information about them apart from a lower score.

The composite method is a good way to summarize the

systematic displacement error for a large number of

precipitation events. The neighborhood approaches, as

well as IS, do not give location error information, except

perhaps indirectly (most scores improve as location er-

rors decrease), and they do not provide information on

the direction or magnitude of the location errors. Be-

cause wavelet decomposition provides both scale and

location information, it should be possible to utilize it to

inform about location errors for different scale features,

but to the best of our knowledge, this has not yet been

proposed in the literature. The Procrustes2 technique

informs directly about location errors for different scale

features. When applying VGM to the entire field, the

structure and location of an object will affect the shape

of the variogram plot so that VGM can be sensitive to

location errors.

c. Do the methods provide information on intensity
errors and distributions?

Results for this question are similar to those for the

previous question, except that neighborhood, IS, and

traditional methods all provide information on intensity

errors and distributions. The CA method can be modi-

fied slightly to give this information by thresholding

fields to obtain CA scores as a function of intensity. The

composite method gives information on the average

difference between the intensities for the forecast and

observation fields. Although the FQM–DAS and FQI

metrics combine information on location and intensity

errors, one can examine the location and intensity

2 Generally, it is appropriate to morph only the forecast field so

that comparisons of multiple forecasts are made to the same ob-

served field. Therefore, diverging vectors indicate underfore-

casting and convergent vectors overforecasting.

OCTOBER 2009 G I L L E L A N D E T A L . 1425



components of the total scores separately. The volume

component of the error from the CRA approach pro-

vides information on intensity errors. A multiplicative

intensity error across the entire field will result in a

variogram shifted in the ordinate axis, but an additive

one will not show up at all. Therefore, intensity errors

are not readily discriminated via the VGM approach.

d. Do the methods provide information on
structure errors?

Similar to the question on scales, the answer to this

question is sensitive to exactly what is meant by struc-

ture. One interpretation concerns individual structures

within a field (e.g., a large-scale convective region), and

the other concerns the overall spatial structure of the

field. The answer to the second question is generally yes

for some of the scale decomposition approaches [e.g.,

Harris et al. (2001) and Zepeda-Arce et al. (2000) assess

scale-invariant parameters related to the spatiotemporal

organization of precipitation fields], but no for most

other approaches.

Techniques that define objects in forecast and obser-

vation fields can assign geometric attributes to these

objects. These attributes (e.g., area, length, and orien-

tation) summarize the structures of objects. Physical

meaning can be assigned if the structure has a repeatable

relationship to the behavior or character of a feature.

For instance, highly elongated rainfall regions would be

expected to occur more often with strong frontal zones.

Circular rain areas might be individual thunderstorms if

small, and complexes of thunderstorms if large.

The only methods that provide this type of informa-

tion are the MODE, CRA, Procrustes, and Procrustes2

methods. Not surprisingly, these are all features-based

methods. Field deformation methods supply vector

fields showing the optimal movement of the forecast

over the entire region. Inspection of such fields can be

useful in determining how well a forecast was able to

capture the observed storm structures, at least on a case-

by-case basis. The FQM–DAS summarizes information

relevant to this issue and can be easily aggregated over

multiple cases. VGM will give information about the

structure of the field as a whole, but does not generally

inform about individual structures.

e. Do the approaches have the ability to provide
information about hits, misses, false alarms,
and correct negatives?

Certain methods such as traditional and neighbor-

hood methods provide an obvious means of determin-

ing hits, misses, and false alarms, while some methods

are sensitive to these values without measuring them

directly.

For example, although the FSS method does not cal-

culate them directly, it is sensitive to false alarms and

misses, as well as hits. Generally, the features-based

methods are able to provide this information, except for

the SAL procedure. The Procrustes method described

in Micheas et al. (2007) gives only limited information

here; it does identify the number of observed cells versus

the number of forecasted cells, which may be useful in

identifying the over- and underforecasting of precipita-

tion areas. The currently implemented version of this

method (Procrustes2), however, incorporates hits, misses,

and false alarms more directly. Otherwise, the strategy

with features-based approaches is to interpret matched

features as hits, unmatched observed features as misses,

and unmatched forecast features as false alarms. There

is no obvious means for determining correct negatives

from this paradigm, but reasonable definitions can be

applied. Because matched features may still be very

different in some ways from each other (e.g., large dif-

ferences in spatial extent), it is often useful to weight the

various attributes of the match to quantify its goodness.

The DIST method provides this information directly,

while the IS method provides it indirectly (in particular,

the IS skill score is equivalent to the Heidke skill score).

The vector fields computed by the field deformation

methods provide information about over- and under-

forecasting by indicating divergence and convergence

(i.e., stretching and squeezing).

f. Do the methods do anything that is
counterintuitive?

More research is required to answer this question,

but there is agreement among ICP participants that the

composite, DIST, neighborhood, scale-separation, and

traditional scores do not do anything unintuitive. The

features-based methods are all susceptible to counter-

intuitive merging and matching (e.g., schemes that rely

more on intensity for matching may match objects that

are far apart). This is hardly surprising as two different

human observers are likely to merge and match objects

differently from each other. A strategy to reduce coun-

terintuitive matching is to impose restrictions or penalty

functions on the differences in location, intensity, size,

etc., between forecast and observed features. Field

deformation methods may ‘‘explode’’ a forecast feature

that is much smaller than the observed feature or

‘‘implode’’ a forecast feature that is not present in the

observations.

g. Do the methods have selectable parameters and
how sensitive are the results to parameter choice?

Although this question is seemingly innocuous, the

interpretation of what constitutes a parameter varies
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depending on how one looks at the problem, or what

information is desired from the verification. All of the

features-based methods except for SAL clearly have

selectable parameters such as a threshold for feature

definition, minimum size criterion, and search radius;

some, such as MODE, have a great many such param-

eters. The CA method currently only has one selectable

parameter: the ratio of observation to forecast overlap

in defining a hit or a miss. There are numerous ways to

carry out the CA method, but once a procedure is de-

cided upon, there are no user-selectable parameters.

Tunable parameters for the FQI method include the (i)

choice of threshold, (ii) percentile distance in the partial

Hausdorff distance calculation, and (iii) number of

surrogate fields to evaluate.

In general, the neighborhood methods have relatively

few selectable parameters, which can include (depend-

ing on the specific method) the number and size of the

neighborhoods and the choice of score used to evalu-

ate the forecast. Methods such as FSS and traditional

scores generally do not have selectable parameters unless

one considers thresholds as parameters. For the DIST

method, one must choose the number of observations a

forecast grid box must encompass in order to be consid-

ered in the computations. The FQM–DAS has only the

search range as a parameter, but also uses the maximum

value of the image and the image size to normalize the

score.

Scale-separation techniques also generally have fewer

selectable parameters, although one might need to

choose which scales are meaningful. The VGM is merely

a plot of the empirical variogram with error bars obtained

via resampling methods, but it is necessary to bin dis-

tances. Deciding on a bin width, or method of binning,

could be thought of as a selectable parameter.

Image warping allows some user-defined choices in-

volving the penalty function (the penalty function pro-

tects against nonphysical warps), and if a distribution

of the errors is assumed, then some additional parame-

ters will be introduced. However, such parameters are

chosen in part to optimize the procedure based on the

properties of a particular variable field and partly de-

pending on the particular user’s needs. For example, for

a precipitation field, it might be reasonable to assume

that the forecast is not going to be spatially displaced

more than, say, 100 km in any direction. Therefore,

it would make sense to more heavily penalize large

movements of the control points beyond this range. The

warp could still make such a move, but it becomes

increasingly less likely with higher penalties on such

transformations. Regardless of how the penalties are

chosen, however, the method gives consistent informa-

tion about the overall forecast quality.

h. Can the results be easily aggregated across
multiple cases?

The answer to this question is generally positive for

all methods, except for the original implementation of

the Procrustes approach (this is readily achieved via

Procrustes2). For MODE, and other similar features-

based methods, it is possible to aggregate over cases in a

number of ways. For example, because it is usually pos-

sible to calculate the x–y displacement between matched

objects, circle histograms can be used to give informa-

tion (aggregated across several cases, or for a single case)

about potential directional biases of forecast objects

along with other information (centroid distances, intensity

differences, etc.). Otherwise, whatever summary measures

are calculated for a single snapshot for a features-based

method can be aggregated over several cases. In fact, the

original motivation for the CRA method was to investi-

gate systematic errors over many cases.

Several aggregation options are available for field

deformation approaches. For example, it is possible to

summarize the vector fields for subregions of each case

and subsequently aggregate these summaries over multi-

ple cases. Care should be taken in doing so as it is certainly

possible for some effects to be canceled out (e.g., a fore-

cast that is generally displaced to the east in the daytime

and to the west at night). Otherwise, low-dimensional

metrics (e.g., FQM–DAS, FQI) can be gleaned for each

field, and these can be easily aggregated over many cases.

i. Can the methods be used to identify timing errors?

Any of the methods could be applied to different

times to find the time that has the best match and,

therefore, give information about timing errors. The

only methods that appear to not potentially have the

ability to directly provide the information either from a

single field or by incorporating temporal information

(e.g., via multiple fields simultaneously) are the IS,

the composite, and the traditional measures. For many

of the methods, this information is obtained indirectly

by spatial offset, false alarms, and missed forecasts.

For the FSS and other neighborhood methods, timing

errors can be inferred if different temporal windows

are used. A new three-dimensional version of MODE

is being developed specifically for identifying timing

errors (R. G. Bullock 2008, personal communication).

It should be possible to account for timing errors with

image warping at the expense of greater complexity in

the optimization routine.

However, practical considerations, including compu-

tational requirements, may limit the ability to extend

some of the new methods to the time dimension. In

theory, it is simple to add another dimension to the
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software, but significant overhead is often associated

with such a modification. Even if the software is already

encoded to use the time dimension, the sheer volume of

data can overwhelm the system unless the spatial do-

main is severely reduced from what could be handled

when only a single time is considered. The time dimen-

sion also adds another pair of boundaries to the dataset

(start time and end time), and almost all methods must

make special exceptions for data at the boundaries or

include a large enough buffer to avoid the issue. Given

the importance of correctly predicting the onset and du-

ration of high-impact events, efforts to adapt verification

methods to quantify timing errors should be strongly

encouraged.

j. Can confidence intervals or hypothesis tests be
readily computed for the method?

For most methods proposed, confidence intervals

(CIs) or hypothesis tests have not been considered.

Bootstrapping can generally be employed for most sit-

uations, but sometimes the cost in efficiency may be

high, at least for operational use. The term ‘‘readily’’

implies that if CI’s or hypothesis tests have not been

applied already, then the answer to this question can be

yes only if it is clear that a method can be easily imple-

mented by an average user.

The Procrustes method employs a Bayesian paradigm

for finding confidence intervals, and the CA and com-

posite methods both easily allow for confidence intervals

because the statistics evaluated by these methods can be

assumed to be normally distributed. The CRA method

tests for significance of correlation when matching ob-

jects. Bootstrap methods are currently being imple-

mented for efficient computation of confidence intervals

for the IS scores (i.e., without requiring the wavelet

decompositions to be redone). Because the image

warping method is based on a statistical model, CI’s can

be efficiently computed provided a reasonable distri-

bution for the movement errors is determined. For large

amounts of data, it may be possible to implement a nor-

mal approximation to find confidence limits for some of

the neighborhood approaches. When categorical scores

are used in neighborhood approaches, then bootstrap

confidence intervals for large datasets can be obtained by

resampling the contingency table entries for each neigh-

borhood size and threshold.

4. Discussion

This paper reviews some of the new approaches that

have recently been developed to provide more diag-

nostic and informative evaluations of high-resolution

forecasts of spatial fields, such as precipitation. Each of

the approaches is designed to evaluate particular attri-

butes of forecast performance. Each approach performs

better than others for certain situations, and for obtaining

certain verification information. Broadly speaking, the

various methods can be categorized into neighborhood,

scale-separation, features-based, and field deformation

approaches.

When adopting new forecast evaluation approaches,

it is important to consider their characteristics and the

forecast performance attributes they assess. The goal of

the ICP is to provide more specific information about

the methods’ capabilities and assist users by providing

valuable information to help them decide which one(s)

is best suited to their needs. To meet this goal, it is

important to include cases that represent a wide range

of forecast situations. For example, some methods

might be ideally suited for forecasts of widespread

precipitation, while others perform better for convec-

tive systems. Grid scales and domains may also factor

into the ability of a verification method to accurately

measure forecast performance. Therefore, it will be

important to include cases on different scales and for

different fields of interest (e.g., wind). For the initial

evaluation, however, the focus is on a set of summer

precipitation forecasts for the Midwest. Idealized cases

with known forecast errors were also tested with each

method and the results from this exercise are summa-

rized in the companion paper by AGBE. These cases

provide a baseline against which the performance of

the methods can be compared.

When evaluating the capabilities of new verification

approaches, the issue of hedging (forecasting other than

one’s true belief in order to improve the verification

score) is generally also of concern. However, given that

most of the new methods considered here are advanced

diagnostic techniques for investigating high-resolution

spatial forecasts, it is unlikely (but not impossible) that

one would tune a model to obtain the best performance

by hedging. For example, for a traditional verification

metric such as a threat score one could hedge the results

and increase the TS by simply increasing the forecast

bias. Nevertheless, it will be worth investigating how

each method could be hedged, if at all, to artificially

improve the verification results.

In summary, methods classified here as neighborhood

methods apply different scores (e.g., traditional scores)

to filtered versions of one or both of the forecast and

observed fields. The filter is a smoothing filter applied to

increasingly larger neighborhoods of each grid point.

The type of filter defines the specific method, and dif-

ferent verification questions are addressed depending on

the chosen score (e.g., a different conclusion may be

reached using HK versus GSS). The scale-separation
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approaches apply a spatial bandpass filter and examine

forecast performance (again, often based on traditional

scores) at various wavenumbers. In contrast to the filter

techniques, which attempt to find the scales at which a

forecast is skillful, the features-based and field defor-

mation approaches attempt to determine how much a

forecast needs to be manipulated spatially in order to

obtain a skillful forecast. The features-based approaches

are concerned more with identifying physically mean-

ingful structures in each field and comparing these

structures across fields. Field deformation approaches,

on the other hand, address the entire field at once

without concern for individual structures in the fields.

Some methods, such as CA and FQI, are more difficult

to classify into these categories, but they can be loosely

included in the features-based and field deformation

categories, respectively.

The results presented in this paper are a preliminary

qualitative summary of the methods contained in the

other papers in this special collection, which include

much more detail regarding the capabilities of the various

approaches. Furthermore, new methods and changes to

the methods described herein may have been invoked in

the other papers for this collection; included here are the

methods as described in published and in-progress papers

(known to these authors) at the time of writing. We be-

lieve that the results of the ICP presented in these papers

represent the first study of this type, in which such a large

variety of new approaches have been compared on a

common ground, with a focus on the information that

can be provided to the users of the methods. Ideally, this

effort will be the first in a series of such collaborative

investigations.
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