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ABSTRACT

The intensity-scale verification technique introduced in 2004 by Casati, Ross, and Stephenson is revisited

and improved. Recalibration is no longer performed, and the intensity-scale skill score for biased forecasts is

evaluated. Energy and its percentages are introduced in order to assess the bias on different scales and to

characterize the overall scale structure of the precipitation fields. Aggregation of the intensity-scale statistics

for multiple cases is performed, and confidence intervals are provided by bootstrapping. Four different ap-

proaches for addressing the dyadic domain constraints are illustrated and critically compared.

The intensity-scale verification is applied to the case studies of the Intercomparison of Spatial Forecast

Verification Methods Project. The geometric and synthetically perturbed cases show that the intensity-scale

verification statistics are sensitive to displacement and bias errors. The intensity-scale skill score assesses the

skill for different precipitation intensities and on different spatial scales, separately. The spatial scales of the

error are attributed to both the size of the features and their displacement. The energy percentages allow one

to objectively analyze the scale structure of the fields and to understand the intensity-scale relationship.

Aggregated statistics for the Storm Prediction Center/National Severe Storms Laboratory (SPC/NSSL) 2005

Spring Program case studies show no significant differences among the models’ skill; however, the 4-km

simulations of the NCEP version of the Weather Research and Forecast model (WRF4 NCEP) overforecast

to a greater extent than the 2- and 4-km simulations of the NCAR version of the WRF (WRF2 and WRF4

NCAR). For the aggregated multiple cases, the different approaches addressing the dyadic domain con-

straints lead to similar results. On the other hand, for a single case, tiling provides the most robust and reliable

approach, since it smoothes the effects of the discrete wavelet support and does not alter the original pre-

cipitation fields.

1. Introduction

Progress in numerical weather prediction (NWP) and

the advent of high-resolution precipitation forecasts have

raised the need for more informative verification ap-

proaches capable of dealing with the complex spatial

structure of such fields. Several new spatial verification

approaches have been developed in the past decade to

account for the following: the space–time uncertainties

related to small displacements between features in the

observation and forecast fields (e.g., Ebert 2008, and

references therein); the scale structure of the fields and

scale dependency of predictability and skill (e.g., Harris

et al. 2001; Casati et al. 2004); the existence of features

with possible displacement, extent, and intensity errors

(e.g., Ebert and McBride 2000; Davis et al. 2006); and the

intrinsic coherent spatial structure of the forecast fields,

which can be deformed to match the observation field

(e.g., Hoffman et al. 1995; Keil and Craig 2007). These new

spatial verification methods have been grouped into four

categories: neighborhood (or fuzzy), scale-separation (or

scale decomposition), feature-based (or object oriented),

and field-deformation approaches (Casati et al. 2008;

Gilleland et al. 2009). The Intercomparison of Spatial

Forecast Verification Methods (Gilleland et al. 2009) is

a metaverification project that aims to analyze the

performance of these new techniques on a dataset of

common case studies (Ahijevych et al. 2009). The goal is

to better understand the capabilities and information

provided by each method, in order to guide users with

specific applications to the choice of the most ade-

quate verification approach. This article proposes some

improvements to the intensity-scale (IS) verification

technique introduced by Casati et al. (2004) within the
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context of the Intercomparison of Spatial Forecast Ver-

ification Methods.

The IS technique belongs to the group of scale-

separation verification methods (Casati et al. 2008;

Gilleland et al. 2009). These methods decompose fore-

cast and observation fields into scale components by us-

ing a spatial filter (e.g., wavelets, Fourier transforms).

Verification with traditional scores is then performed for

each individual scale (e.g., Briggs and Levine 1997; Casati

et al. 2004). Scale-separation approaches can assess the

scale dependency of the error and the no-skill to skill

transition scale. Moreover, Zepeda-Arce et al. (2000)

and Harris et al. (2001) analyze the spatial structure of

the forecast and the observation fields by assessing

some scale-invariant parameters related to the spa-

tiotemporal organization of the precipitation fields. Note

that scale-separation approaches rely on a single-band

spatial-scale filter, whereas neighborhood verification

methods [Ebert (2008, 2009); see, e.g., the fraction skill

score introduced by Roberts and Lean (2008)] operate

with a low-bandpass filter (i.e., smoothing). Therefore,

scale-separation approaches are capable of isolating in-

dividual wavelengths, which are associated with weather

phenomena of different scales (e.g., fronts or convec-

tive cells), and can provide information on the fore-

cast errors and skill for individual scales, separately.

Neighborhood verification methods, on the other hand,

do not aim to separate the scales, but assess the critical

smoothing scale (or resolution) above which the desired

skill is achieved. Scale-separation and neighborhood

verification approaches differ fundamentally because

of their different definitions of ‘‘scale,’’ which lead to

different interpretations of the verification results. More

discussion on these differences can be found in Gilleland

et al. (2009), Ebert (2009), and Casati et al. (2008).

The IS technique assesses the forecast skill for dif-

ferent spatial scales and precipitation intensities. The

scales are obtained by a 2D Haar wavelet filter applied to

thresholded forecast and observation fields. The thresh-

olding process allows the IS technique to bridge cate-

gorical and scale-separation verification approaches. Haar

wavelets and the categorical approach were chosen in the

design of the IS verification technique because they are

robust and well suited for analyzing sparse precipitation

fields characterized by spatial discontinuities and highly

skewed intensity distribution.

The IS technique is described here from a new per-

spective, which aims to be complementary to that in

Casati et al. (2004). In particular, a more standard wavelet

approach is used to define the IS scale components.

Moreover, new developments in the IS verification

method are proposed in order to address issues raised

in recent studies that made use of the IS technique (e.g.,

Mittermaier 2006; Cisma and Ghelli 2008). One change is

that the bias is no longer removed from the forecast prior

to skill assessment. The energy is instead introduced to

assess the bias on different scales and for different

thresholds. The scale structure is also evaluated by the

energy percentages. A method for aggregating IS ver-

ification statistics for multiple case studies is presented

to respond to operational verification needs. Finally,

the constraints dictated by the need of a dyadic domain

for discrete wavelet transforms are addressed with dif-

ferent approaches.

The IS technique is reviewed and its new develop-

ments are illustrated in section 2. The IS verification is

then applied to the spatial verification methods inter-

comparison case study dataset. A detailed description of

these cases can be found in Ahijevych et al. (2009). The IS

verification results for the geometric cases, the syntheti-

cally perturbed case, and the Storm Prediction Center/

National Severe Storms Laboratory (SPC/NSSL) 2005

Spring Program case studies are presented in section 3.

Discussion and conclusions are given in section 4.

2. The method

The following description of the IS technique intends

to be complementary to that in Casati et al. (2004). In

particular, the definition of the scale components and the

wavelet filter are treated differently. In the original paper,

the scale components were obtained as the difference of

fields smoothed at the resolutions of 2j and 2j21 grid

points. In this work, the scale components are obtained

by inverting the 2D Haar discrete wavelet transform for

the vertical, horizontal, and diagonal wavelet coefficients

and then summing the fields reconstructed for the three

wavelet orientations, for each individual scale. Note that

the scale components obtained with the two procedures

are identical. Despite the similarity between the wavelet

filter as described in Casati et al. (2004) and Laplacian

pyramids (Burt and Adelson 1983), the IS technique scale

components differ substantially from the ones obtained

by a Laplacian pyramid. In fact, wavelet-based scale

components (such as the IS technique scale components)

are orthogonal, whereas Laplacian pyramid components

are not (Mallat 1989). Note that orthogonality is a key

feature of the IS technique, since this enables the IS sta-

tistics to be additive [e.g., Eq. (1)].

Casati et al. (2004) applied the IS verification to pre-

processed and recalibrated (unbiased) data. The aim of

the preprocessing was to normalize the data and define

thresholds so that each categorical bin had a similar

sample size, whereas the recalibration was performed to

eliminate the marginal distribution bias. Preprocessing

and recalibration are not strictly necessary for the IS
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technique. In this study, neither preprocessing nor re-

calibration is performed, and the IS approach is applied

for empirically chosen categorical thresholds to biased

forecasts. Note that the IS skill score for biased forecasts

differs from that for unbiased forecasts for an extra scale

component: in the following description, particular at-

tention is given to this additional bias scale component.

a. The intensity-scale skill score

For each threshold, the forecast and observation fields

are transformed into binary fields: where the gridpoint

precipitation value exceeds the threshold, it is assigned 1;

where the threshold is not exceeded, it is assigned 0.

Figures 1a and 1b illustrate examples of a forecast and the

observation fields and Figs. 1c and 1d show their corre-

sponding binary fields for a threshold of 1 mm h21. This

case is one of the NIMROD case studies analyzed in

Casati et al. (2004). This case was also used by Ebert

(2008) to illustrate different neighborhood verification

methods and is used in this section to illustrate the IS

approach. A 3-h lead-time forecast of precipitation rate

produced by NIMROD (Golding 2000) is verified

against its corresponding radar-based analysis on a 5-km-

resolution spatial domain over the United Kingdom. The

interesting feature this case shows is an intense storm of

the scale of 160 km, which is displaced almost its entire

length. The displacement error is clearly visible from the

binary field difference (Fig. 1e) and the contingency

table image (Fig. 1f) illustrating the counts of the con-

tingency table (Table 1) obtained for the same threshold.

The binary forecast and observation fields obtained

from the thresholding are then decomposed into the sum

of the components on different scales. The scale com-

ponents are obtained as follows. First, a 2D Haar dis-

crete wavelet transform (Mallat 1989; Daubechies 1992)

is applied to the field. Wavelet coefficients for the di-

agonal, horizontal, and vertical 2D wavelets are so ob-

tained. Then, for each individual scale, the inverse

discrete wavelet transform is applied to the diagonal,

horizontal, and vertical wavelet coefficients. Three re-

constructed fields, corresponding to the three orienta-

tions, are so obtained in the data space, for each scale.

These three fields are then summed, to obtain the cor-

responding scale component. Figure 2 shows the wavelet

scale components of the binary forecast and the obser-

vation for the NIMROD case study. The Haar wavelet

filter, as any spectral filter, isolates features of different

spatial scales. For the NIMROD case study analyzed,

the displaced intense storm is identified by large positive

values (the black square) in the scale component cor-

responding to 160 km because of its size (160 km). Note

that its positions in the forecast and the analysis scale

component are different, due to the 160-km displacement.

The wavelet transform is a linear operator: this im-

plies that the difference between the spatial scale com-

ponents of the binary forecast and the observation fields

(Fig. 2) is equal to the spatial scale components of the

binary field difference (Fig. 3). The IS skill score con-

siders the scale components of the binary field difference,

which can be obtained either from the wavelet de-

composition of the binary field difference (as in Casati

et al. 2004) or from the difference of the scale compo-

nents of the binary forecast and observation fields (as

illustrated here). The scale components of the binary

field difference for the NIMROD case study (Fig. 3)

exhibit a large error at the scale of 160 km, due to the

storm being displaced. The scale structure of the error

is affected by both the displacement of the feature

(160 km) and by its size (160 km).

The IS scale components are fields with different

resolutions. For a field defined over a square domain of

2L 3 2L grid points, there are L 1 1 scale components.

The first L scale components [referred to as mother

wavelet components in Casati et al. (2004)] are obtained

by applying the inverse discrete wavelet transform to the

vertical, horizontal, and diagonal wavelet coefficients,

and then summing the reconstructed fields obtained

from the three wavelet orientations, for each individual

scale. These components are produced by wavelets

that have square support with dimensions equal to 2, 4,

8, . . ., 2L grid points, and resolutions equal to 1, 2, 4, . . .,

2L21 grid points, respectively. The (L 1 1)th scale com-

ponent [referred to as the father wavelet component in

Casati et al. (2004)] is obtained by reconstructing the

scaling function with support equal to 2L 3 2L grid points

(i.e., the whole domain). This scaling function component

for the Haar wavelet has a resolution equal to 2L grid

points. Throughout this article, the IS scale components

l 5 1, 2, 3, . . ., L 1 1 are uniquely identified by their

resolution of 2l21 5 1, 2, 4, . . ., 2L grid points.

The Haar scaling function component is a constant

field over the 2L 3 2L gridpoint domain, with a value equal

to the field mean. For the binary forecast and observation,

these are equal to r 5 (a 1 b)/n and s 5 (a 1 c)/n, that is,

the proportion of forecast and observed events above

the threshold, as evaluated from the contingency table

counts. These relations can be easily shown by evaluat-

ing the mean of the 0/1 binary fields, and are intuitive

when comparing forecast and observation binary fields

to their corresponding contingency table image (Figs. 1c,

1d, and 1f). The difference between the scaling function

components of the forecast and observation fields (i.e.,

Fig. 3, scale 9) provides information on the whole-field

bias. For an unbiased forecast, the scaling function com-

ponents of the forecast and observation are equal, and the

scaling function component of the field difference is zero
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(no error). Since Casati et al. (2004) considered un-

biased forecasts, the (zero) scaling function component

of the error was not included in the IS skill score evalu-

ation (it would have been trivially skillful). In the present

study, on the other hand, this component is nonzero

(since biased forecasts are verified) and is therefore

considered in the IS skill score evaluation.

For each threshold and for each scale component, the

mean square error (MSE) is evaluated. Note that the MSE

can be evaluated either from the scale components of the

FIG. 1. NIMROD case study: (a) 3-h lead-time forecast and (b) corresponding verifying analysis. Binary fields for the (c) forecast and

(d) analysis for a threshold of 1 mm h21. (e) Binary field difference and (f) corresponding contingency table image.
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binary forecast and observation fields (i.e., the compo-

nents in Fig. 2), or from the mean of the squared values

of the scale components of the binary field difference

[i.e., the components in Fig. 3, as in Casati et al. (2004)].

We denote this MSE as MSEu,l to indicate its de-

pendency on the threshold u and scale l. Figure 4a shows

the MSEu,l for the NIMROD case study. The error is

large for small thresholds and decreases as the

threshold increases. This behavior is due to the de-

pendence of the error on the frequency of events in the

binary fields: the smaller the threshold, the more events

will exceed it and, therefore, the larger the error. The

threshold dependency of the MSEu,l can be eliminated by

normalization, as explained in the following paragraph.

The scale components in Fig. 2 add up to the original

forecast and analysis binary field (Figs. 1c and 1d). Sim-

ilarly, the scale components in Fig. 3 add up to the orig-

inal binary field difference (Fig. 1e). Because of the

orthogonality of the discrete wavelet transform, the ad-

ditive properties of the scale components transfer to

mean square statistics (see Casati et al. 2004, section

3.2.2). The sum of the MSE of the scale components is

therefore equal to the MSE of the original binary fields:

MSE
u

5 �
L11

l51
MSE

u,l
. (1)

This enables one to calculate, for each threshold, the

percentage of the total MSEu that each scale contributes:

MSE%
u,l

5
MSE

u,l

MSE
u

� �
3 100. (2)

Figure 4b shows the MSE percentages for each threshold

and scale for the NIMROD case study. The MSE%u,l of

precipitation fields usually exhibits small errors on large

scales (large scales are more predictable and large dis-

placements seldom occur) and large errors on small

scales (usually due to many small-scale displacements),

with the largest error associated with the smallest scale

and highest thresholds (intense small-scale events are

the least predictable). Moreover, the NIMROD case study

exhibits a large error at 160 km for thresholds between ½

and 4 mm h21: such behavior is specific to this case and is

due to the 160-km intense storm being displaced almost its

entire length.

To define the IS skill score, the MSE for a random

binary forecast and the observation fields needs to be

estimated. This random binary MSE can be estimated

with an approach that is similar to that in section 3.2.3 of

Casati et al. (2004), and assuming that random binary

forecast and observation fields are independent Bernoulli-

distributed variables with expectations equal to r and s,

respectively. In the present study, however, an alterna-

tive approach is shown, in order to highlight the strong

link between categorical and IS verification statistics.

Let us recall that the MSE of the original binary fields

(which is denoted by MSEu to indicate its dependency

on the threshold u) is equal to the sum of the proportion

of misses (c/n) and false alarms (b/n) for the contingency

table obtained with the same threshold:

MSE
u

5
(b 1 c)

n
. (3)

This relation follows from the evaluation of the MSE of

0/1 binary fields [see Casati et al. (2004), Eq. (11)] and is

intuitive when comparing the forecast and observation

binary field difference to their corresponding contin-

gency table images (Figs. 1e and 1f). The random binary

MSE is then estimated from the sum of the estimates of

b/n and c/n for a contingency table obtained by random

chance, with sample climatology s and the frequency bias

index B 5 r/s equal to those of the original binary fields.

By applying Murphy and Winkler’s (1987) factorization

and Bayes’s theorem, the joint probabilities estimated

by b/n and c/n can be expressed as the product of mar-

ginal and conditional probabilities (e.g., see Jolliffe and

Stephenson 2003; Wilks 2006). Conditional probabilities

for random chance are equal to the unconditional prob-

abilities. Then, b/n and c/n are estimated by the products

of the marginal probabilities solely. The expected value

of the MSE for a biased random binary forecast and the

observation fields is then estimated by

MSE
u,rand

; B � s � (1� s) 1 s � (1� B � s). (4)

The IS skill score is defined with the standard skill

score definition (as in Jolliffe and Stephenson 2003;

Wilks 2006). It is based on the MSEu,l and uses random

chance as the reference forecast. The binary random

MSE estimated by Eq. (4) is equipartitioned across the

L 1 1 scales to obtain the IS skill score:

SS
u,l

5 1�
MSE

u,l

MSE
u,rand

/(L 1 1)
. (5)

TABLE 1. Contingency table: the counts a, b, c, and d cor-

respond to the hits, false alarms, misses, and correct rejections

defined for the forecast (F ) and observation (O) exceeding the

threshold u. The total number of sampled events is equal to n 5 a 1

b 1 c 1 d.

O $ u O , u

F $ u a b a 1 b

F , u c d c 1 d

a 1 c b 1 d n
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FIG. 2. Wavelet scale components of the (top) binary forecast and (bottom) analysis for the NIMROD case study,

for a threshold of 1 mm h21.
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Figure 5 shows the IS skill score for the NIMROD case

study. The IS skill score evaluates the forecast skill as

a function of the precipitation intensity and the spatial

scale of the error. Positive values of the IS skill score are

associated with a skillful forecast, whereas negative

values are associated with no skill. Usually, large scales

exhibit positive skill since large-scale events, such as

fronts, are well predicted, whereas small scales exhibit

less skill, since small-scale events, such as convective

showers, are less predictable. The smallest scales associ-

ated with the highest thresholds usually exhibit the worst

skill. For the NIMROD case illustrated, the no-skill to

skill transition scale is 40 km. However, the 160-km scale

exhibits negative skill for the thresholds from ½ to

4 mm h21 due to the 160-km storm, which is displaced

almost its entire length.

From Eq. (5) and Eqs. (1), (3), and (4), it is easy to show

that for each threshold u the average of the scale com-

ponents of the IS skill score is equal to the Heidke skill

score (see section 3.3 of Casati et al. 2004). The IS skill

score can be interpreted as a scale decomposition of the

Heidke skill score (HSS). The intensity-scale technique,

in this respect, bridges categorical and scale-separation

(or scale decomposition) verification approaches.

b. The energy

To assess the bias on different scales and compare

forecast and observed scale structures, the energy (En)

and its percentages (En%) are evaluated. The average

energy per cell (hereafter energy) of a gridded field X is

the average of the field gridpoint squared values:

En(X) 5
1

n
�

n

i51
x2

i . (6)

As for the MSE, we denote the energy of the original

binary fields as Enu, and the energy of the scale com-

ponents of the binary fields as Enu,l, to indicate their

dependency on the threshold u and scale l. The energy of

the scale components of the binary forecast and ob-

served fields provides feedback on the number of events

present in the forecast and observation, as a function of

threshold and scale. Figures 6a and 6b show Enu,l for the

NIMROD case study forecast and analysis: small thresh-

olds are associated with high energy, since many events

exceed the threshold, whereas large thresholds are as-

sociated with low energy, since few events exceed the

threshold. Note, especially for the analysis, the higher

energy at the 160-km scale and for thresholds between

FIG. 3. Wavelet scale components of the binary field difference for the NIMROD case study, for a threshold of 1 mm h21.
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½ and 4 mm h21, which is associated with the intense

160-km storm.

Comparison of the forecast and observation Enu,l

provides feedback on the bias on different scales and for

each threshold. The energy bias can be assessed by the

energy difference, the energy ratio, and by the energy

relative difference. The energy relative difference is de-

fined as the difference between forecast (F ) and obser-

vation (O) energies normalized by their sum:

En rel diff 5
[En(F)� En(O)]

[En(F) 1 En(O)]
. (7)

By dividing the numerator and denominator of this

equation by the observation energy, it is easy to show that

the energy relative difference is equal to the forecast and

observation energy ratio centered on zero and scaled, in

order to range between 21 and 1. Positive values of the

energy relative difference indicate overforecasting and

negative values indicate underforecasting. The perfectly

unbiased forecast would have zero energy relative

difference.

In this study, for quantitative precipitation forecasts,

the energy relative difference is preferred over the en-

ergy difference or ratio for the following reasons:

FIG. 4. Binary field (a) MSE and (b) MSE percentage for the NIMROD case study. Bars of

different gray shades correspond to increasing precipitation thresholds (mm h21), as indicated

in the legend.
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1) The energy difference tends to overpenalize (under-

penalize) differences that are large (small) in absolute

value simply because the two energy amounts are

large (small). Instead, the energy relative difference

accounts for the difference between the forecast and

observation energies relative to their magnitude.

2) The energy ratio compares the forecast and obser-

vation energies, accounting for their relative magni-

tudes. However, the ratio approaches infinity as the

denominator (observation energy) approaches zero.

The energy relative difference is equal to the cen-

tered and scaled energy ratio; therefore, it retains the

same type of information but has a finite range.

The energy relative difference, therefore, enables one to

compare biases associated with low- and high-precipitation

thresholds (associated with larger and smaller energy

amounts) on a common scale.

Figure 6c shows the forecast and analysis Enu,l relative

difference for the NIMROD case study. The forecast has

too much energy at small thresholds, especially for the

large scales, due mainly to the overforecasting of drizzle in

the north (off the Scottish east coast) and to the west of

the 160-km storm (see Fig. 1). On the other hand, the

energy relative difference exhibits underforecasting for

high thresholds, consistent with the lack of intense pre-

cipitation in the NIMROD forecast. Note that these re-

sults agree with the results deduced using the recalibration

function in Casati et al. (2004). The scale of 160 km ex-

hibits a particularly pronounced underestimation for the

thresholds between 2 and 8 mm h21, since the 160-km

storm in the analysis is characterized by larger values than

those forecast.

The energies of forecast and observation binary fields

are related to categorical statistics. The energy of the

observation binary field, Enu(O), is equal to the sample

climatology s 5 (a 1 c)/n for the contingency table ob-

tained with the same threshold. Similarly, the energy of

the forecast binary field, Enu(F ), is equal to r 5 (a 1 b)/n.

These relations can be easily shown by evaluating the

energy of the 0/1 binary fields via Eq. (6), and noting that

xi 5 xi
2 for binary 0/1 gridpoint values. The relations are

intuitive when comparing binary forecast and analysis

fields to their corresponding contingency table image

(Figs. 1c,d, and 1f). The Enu relative difference is equal

to the statistics obtained by centering and scaling the

frequency bias index: (B 2 1)/(B 1 1).

To focus on the forecast and observation scale struc-

ture solely, the threshold dependence of the energy is

eliminated by normalization. As for the MSE [see Eq. (1)

and related discussion], because of the orthogonality of

the discrete wavelet transform, the additive properties

of the scale components transfer to the energy. The sum

of the energies of the scale components of the binary

field is then equal to the energy of the original binary

field:

En
u

5 �
L11

l51
En

u,l
(8)

This enables one to calculate, for each threshold, the

percentage of the total Enu that each scale contributes:

En%
u,l

5
En

u,l

En
u

� �
3 100. (9)

FIG. 5. Intensity-scale skill scores for the NIMROD case study. Bars of different gray shades

correspond to increasing precipitation thresholds (mm h21), as indicated in the legend.
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FIG. 6. NIMROD (a) forecast and (b) analysis energy, and (c) their relative difference. NIMROD (d) forecast and (e) analysis energy

percentage, and (f) their relative difference. Bars of different gray shades correspond to increasing precipitation thresholds (mm h21), as

indicated in the legend.
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The energy percentages provide feedback on how the

events are distributed across the scales and, therefore,

carry information on the scale structure of the forecast

and observation fields. Figures 6d and 6e show the

En%u,l for the NIMROD case study. On large scales,

a larger energy percentage is associated with low thresh-

olds (and less with high thresholds), since large-scale

features are usually characterized by low intensities (e.g.,

stratiform precipitation). On the other hand, on small

scales the energy percentage is larger for high thresholds

(and smaller for low thresholds), since small-scale fea-

tures are in general associated with intense events, such as

convective cells or showers. Similarly, looking across the

scales, for high thresholds most of the energy percent-

age is concentrated on small scales, since high thresh-

olds identify mainly small-scale intense events. For low

thresholds, the observed energy percentage is more

or less constant up to the 160–320-km scales (size of

the observed storm), and then it drops, since the low

thresholds identify all large- and small-scale events up

to the largest feature size. For the NIMROD case study

illustrated, the analysis exhibits large energy percent-

ages on the 160-km scale and for thresholds between

½ and 4 mm h21, associated with the intense 160-km

storm. The forecast energy percentages associated with

the 160-km-scale storm are smaller than for the analysis

(especially for the larger thresholds, such as u 5 2, 4,

and 8 mm h21), due to the lower intensities predicted

within the storm. On the other hand, for small thresh-

olds the forecast energy percentages on the 320-km

scale are large, due to the two broad regions of over-

forecast drizzle.

Comparison of the forecast and observation energy

percentages enables the comparison of the forecast and

observation scale structures. The scale structure is as-

sessed by the relative difference of En%u,l (Fig. 6f). For

small thresholds, the NIMROD forecast overestimates

the number of large-scale events and underestimates the

number of small-scale events, due again to the drizzle

overforecasting. For large thresholds the forecast under-

estimates the number of large-scale events. This under-

estimation is particularly pronounced for the 160-km-scale

storm at large thresholds (e.g., u 5 2, 4, 8, and 16 mm h21):

in fact, for these thresholds the analysis still exhibits

a large-scale coherent feature (see Fig. 1), whereas the

forecast, because of the underestimation of the storm’s

precipitation intensities, no longer exhibits a large spa-

tially coherent feature. On the other hand, the forecast

exhibits an intense and narrow precipitation band along

the northern edge of the storm, which is not present in

the analysis (see Fig. 1): this causes the overforecasting

of the energy percentage for small scales (5–10 km) and

high thresholds.

Note that the Enu,l and En%u,l intensity-scale struc-

tures (Fig. 6) are similar to those of the MSEu,l and

MSE%u,l (Fig. 4): this is due partially to the dependence

of the MSE on the number of events (the more events,

the more likely the error). The IS skill score, on the

other hand, is less affected by the number of events, and

it is not as dependent on the threshold as is the MSE or

energy. In fact, the IS skill score accounts for the error

relative to the number of events, via the normalization

of the MSE with the MSEu,rand.

The underlying motivation for choosing the energy to

assess the bias on different scales, rather than a different

measure, arises from the fact that the energy is a mean

square statistic defined in a similar fashion to that for the

MSE. Then, as for the MSE, the energy is additive across

the scales [Eq. (8)], which allows the evaluation of the

threshold-independent energy percentages for the as-

sessment of the scale structure. As for the MSE, the

energy relates to categorical statistics when applied to

binary 0/1 fields. Finally, since the energy is defined

coherently with the MSE, this can naturally lead to the

definition of alternative IS skill scores based on MSEu,l,

Enu,l(F ), and Enu,l(O). As an example, an IS skill score

similar to the fraction skill score (Roberts and Lean

2008) can be defined for each threshold u and scale l: this

would enable the assessment of the skill relative to the

amount of forecast and observed events characterizing

each separate scale, and not with respect to an equi-

partitioned random error (which might not reflect the

lower predictability of small scales). Note, however, that

with this alternative definition the link between HSS and

the IS skill score would be lost.

c. Statistics aggregation on multiple cases

The IS statistics obtained from multiple model runs

can be aggregated. For consistency, the aggregation is

performed for cases defined on the same spatial domain,

and aggregated statistics are evaluated for the same in-

tensity thresholds. In this study we will show aggregated

statistics for the spring 2005 forecast–observation data-

set (section 3c). Here, we briefly discuss how to evaluate

the IS aggregated statistics.

For each threshold and scale, the aggregated MSEu,l

and forecast and observation Enu,l are obtained simply

by averaging the MSEu,l and Enu,l of all the model runs,

for the corresponding threshold u and scale l. The ag-

gregated MSEu and Enu are obtained from the aggregated

MSEu,l and Enu,l as the sum of their scale components

[Eqs. (1) and (8)]. Aggregated En%u,l are obtained from

the aggregated Enu,l and Enu via Eq. (9). The energy and

energy percentage relative differences are defined from

the forecast and observation aggregated Enu,l and En%u,l

via Eq. (7).
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The aggregated IS skill score is evaluated by substitut-

ing the aggregated MSEu,l in Eq. (5), and by evaluating

the MSEu,rand [Eq. (4)] with the aggregated sample cli-

matology and the aggregated frequency bias index. For

each threshold u, the aggregated sample climatology

s 5 (a 1 c)/n is equal to the aggregated observation

Enu(O). Similarly, for each threshold u, the aggregated

r 5 (a 1 b)/n is equal to the aggregated forecast Enu(F ).

The aggregated frequency bias index, B 5 (a 1 b)/(a 1 c),

is then obtained as the ratio of the aggregated r and s, for

the corresponding threshold u.

For all the aggregated statistics, 95% confidence in-

tervals (CIs) are obtained by using a bootstrapping tech-

nique (Efron and Tibshirani 1993). The aggregated cases

are resampled by random selection, with replacement, for

1001 times. Aggregated statistics are evaluated for each

resample to obtain a distribution of 1001 elements for

each of the IS statistics (for each threshold and scale).

The 0.025 and 0.975 quantiles of these distributions are

then used to provide an estimate of the 95% CI for the IS

statistics, for each threshold and scale. Note that such

confidence intervals reflect the variability of the verifi-

cation statistics within the aggregated case studies.

d. Dyadic domain constraints

The IS technique as proposed in Casati et al. (2004)

was applied to spatial forecasts defined over square

domains of 2n 3 2n grid points (dyadic domain). The

demand of a dyadic domain is related to the dyadic na-

ture of the discrete (orthogonal) wavelet transforms.

This constraint, which is unlikely met for most opera-

tional forecasts, can be bypassed in different ways. In

this study we propose four different approaches to ad-

dress this issue: padding, cropping, interpolating, and

tiling. The choice of which approach to use to tackle the

dyadic domain constraint depends on the shape and di-

mension of the forecast domain, and on the aims of the

verification.

1) Padding—If the original forecast domain size is just

slightly smaller than a dyadic domain, then a dyadic

verification domain can be obtained by appending

constant values (e.g., zeros, for precipitation) to the

forecast domain boundaries. Note that for variables

that are highly discontinuous in space, such as pre-

cipitation, padding with zero would not dramatically

affect the field distribution (which is characterized by

a large number of zero values anyway) and/or the

field scale properties. On the other hand, for smooth

variables (such as temperature) padding with a con-

stant value would be more problematic, since the

distribution and spatial properties of the field would

be changed. Padding therefore is advisable only for

the former type of variables. Note also that padding

might artificially increase the skill, since correct non-

events are added to the forecast and observation

fields. Padding is advisable therefore only for small

areas.

2) Cropping (masking)—The IS verification can be per-

formed on a dyadic domain embedded within the

original forecast domain. This approach is suggested if

the domain size is just slightly larger than a dyadic

domain (boundaries are often disregarded in verifi-

cation procedures anyway since they are frequently

affected by instabilities and other boundary effects),

or if it is desirable to reduce the verification domain to

a subregion of interest within the forecast domain

[e.g., where the observational spatial coverage is more

reliable, such as in Casati et al. (2004)].

3) Interpolating (regridding)—If the domain dimensions

are of similar order, the forecast and observations can

be regridded into a dyadic domain by interpolation.

Different types of interpolation are advised for dif-

ferent variables, which are characterized by different

distributions and field characteristics; for example,

nearest-neighbor interpolation or linear interpola-

tion to a denser grid are often advised for precipi-

tation, because of its discontinuous nature and to

preserve peak values (mass-conservative interpola-

tions are also often used); cubic-spline interpolation

is advised for smoother variables, such as tempera-

ture. Note that the interpolation changes the physical

scale dimensions and alters the original field values.

4) Tiling—This approach does not involve any domain

reduction, expansion, or altering of values by in-

terpolation, and it is the most robust of the ap-

proaches proposed when applied to a single forecast.

Tiling performs the IS verification on dyadic tiles

with dimensions equal to those of the largest 2n 3 2n

gridpoint tile that fits in the forecast domain. The

tiles are shifted within the forecast domain in order

to cover it, allowing tiles to overlap. The IS verifi-

cation statistics obtained for each tile are then ag-

gregated as described in the previous section. Note

that with this approach the center of the domain will

be sampled more than the boundary grid values

(which can be desirable sometimes). The tiling ap-

proach smoothes out the effects due to the discrete-

ness of the wavelet transform support. Tiling also

enables one to provide confidence intervals for the IS

verification statistics for a single case study. Note,

however, that the confidence intervals obtained via

the tiling reflect the uncertainty of the statistics due

to the discrete support of the wavelet transforms

(and not their variability within different aggregated

case studies). Finally, when aggregating multiple case
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studies or model runs, the effects due to the discrete-

ness of the wavelet transform are naturally eliminated

as a result of the movement of weather features. In

fact, the precipitation features assume different po-

sitions within the discrete wavelet support for each

aggregated case, which results in the same effect as

moving the tiles for a single case. Therefore, fewer

tiles are needed for aggregated cases; for large ag-

gregations, one tile position is probably sufficient.

All the case studies used in the Intercomparison of

Spatial Forecast Verification Methods are defined over

spatial domains of 501 3 601 grid points. For the geometric

cases (section 3a), the IS verification results are obtained by

tiling. Statistics evaluated on 201 tiles of 512 3 512 grid

points are aggregated. The tiles are randomly positioned,

so that the forecast and reference geometric shapes as-

sume different positions with respect to the discrete

wavelet dyadic support, but are still entirely contained

in the domain and with the same relative positions with

respect to each other. Tiles with values beyond the

original 501 3 601 gridpoint domain are padded with

zeros. Some of the results obtained from single tiles are

also shown, in order to illustrate the sensitivity of the

verification statistics to the discrete wavelet support.

For the synthetically perturbed case study (section 3b),

the original 501 3 601 gridpoint domain is first padded

with a narrow stripe of zeros (11 3 601 grid points), in

order to obtain a domain of 512 3 601 grid points. The IS

verification statistics are then obtained by tiling with five

tiles of 512 3 512 grid points, with origins at the columns

1, 22, 45, 67, and 90. These five tiles, with positions

varying in the x direction solely, are chosen in order to

cover entirely the precipitation domain while minimizing

the zero-padded areas (tiles with positions that also vary

in the y direction would require more padding, which

could add artificial skill). Moreover, fewer tiles are used

for the perturbed case than for the geometric cases, since

for more realistic precipitation fields the IS statistics ex-

hibit less sensitivity to the wavelet support position (more

discussion follows in sections 3a and 3b). As for the

geometric cases, results obtained by tiling are compared

to those obtained from single tiles in order to illustrate

how the tiling procedure reduces the effects due to the

discrete wavelet support.

For the spring 2005 dataset (section 3c), the domain is

first padded with zeros in the same fashion as for the

synthetically perturbed case. The three approaches—

cropping, interpolating, and tiling—are then applied and

compared, through the analysis of the distinct behaviors

of the IS verification statistics for the aggregated case

studies. The cropping is performed differently for each

of the nine cases, depending on the position of the major

precipitation features: the region (either to the west or

to the east of the domain) of 512 3 89 grid points with

less precipitation is masked out prior to performing the

IS verification. Note that such a case-by-case selected

cropping procedure is performed here solely to better

illustrate the cropping effects on the IS statistics (see

section 3c), and it is not recommended for operational

practice. A nearest-neighbor interpolation is performed

to regrid the spring 2005 case studies on a dyadic 512 3

512 gridpoint domain; note that this interpolation

eliminates columns of values (evenly spaced across the

east–west direction) from the original fields. Tiling is

performed as for the perturbed case study, with five tiles

of 512 3 512 grid points with origins at columns 1, 22, 45,

67, and 90. Results obtained with a larger number of tiles

were similar to those found with these five tiles (not

shown).

3. Results

a. The geometric cases

The IS skill score and energy are evaluated for the

geometric case studies (Fig. 1 in Ahijevych et al. 2009),

for thresholds of 12.7 and 25.4 mm. The lower threshold

of 12.7 mm identifies the entire elliptic feature (low

and high intensities), whereas the higher threshold of

25.4 mm isolates the high-intensity core embedded in

the low-intensity feature. Figure 7 shows the IS skill

score obtained by tiling for the geometric case studies.

For all the cases, the skill is negative at the dominant

scales of the features and their displacements. For the

higher threshold, the negative skill is associated with

smaller scales than for the lower threshold, since the

higher threshold isolates smaller-scale features.

Figures 7a and 7b provide feedback on the sensitivity

of the skill score to displacements of the elliptic feature.

As the distance grows, the negative skill shifts to larger

scales, for both the low and high thresholds: the IS skill

score is sensitive to the displacement error. Figures 7c

and 7e provide feedback on the sensitivity of the skill

score to errors in the extent of the feature, for the same

displacement. As the feature extent gets larger, the

negative skill score shifts to larger scales, for both the low

and high thresholds: the IS skill score is sensitive to

feature size errors. Note also that despite the larger bias,

the skill score in Fig. 7e is less negative than that in Fig. 7c

for the low threshold, because the forecast and reference

ellipses overlap. The IS skill score does not separate the

different sources of forecast errors, such as displacement

or feature size, but it is sensitive to them.

Figure 7d shows the IS skill score for the elliptic feature,

which is displaced and deformed to have a horizontal
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major axis. This case aims to test the sensitivity of the

verification technique to the feature orientation. The er-

ror scale structure (i.e., the scale components of the bi-

nary field difference) and the MSEu,l for this case are in

between those of the ellipsoids displaced 50 and 200 grid

points. In fact, the forecast and reference ellipsoids

touch (as for the ellipsoid displaced 50 grid points) but,

because of the horizontal orientation, the wavelet com-

ponents of the binary field difference extend to larger

scales (as for the ellipsoid that is displaced 200 grid

points). The IS skill score for this case is similar to that of

the ellipsoid displaced 200 grid points. The sensitivity

of the IS skill score to the feature orientation is not as

well defined as the sensitivity to the displacement and

feature size.

Note that for the geometric cases the IS skill score is

positive not only for very large scales (which are suffi-

ciently large to remain unaffected by the ellipses’ dis-

placements), but also for the smallest scales: the smallest

scales are skillful because there are no small-scale events

(the ellipses are smoother than the grid resolution), and

therefore little error is associated with these scales. On

the other hand, for these same geometric cases, neigh-

borhood verification techniques [e.g., the fraction skill

score; see Mittermaier and Roberts (2010); Ebert (2009)]

exhibit negative skill on small scales, and the skill be-

comes positive only when the neighborhood size is suf-

ficiently large to encompass both the reference and the

displaced ellipses. These very different results are due

to the different definitions of ‘‘scale’’ for the scale-

separation and neighborhood verification approaches.

For scale-separation methods, such as the IS technique,

the scales are obtained with a single-band filter: these

approaches are therefore able to isolate scale-dependent

errors and assess the skill separately, for each individual

scale. Neighborhood methods, on the other hand, are

based on a low-bandpass filter (i.e., smoothing): as the

neighborhood size (or scale) increases, forecast and ob-

servation fields are filtered and the exact space–time

matching requirements become more and more relaxed.

For neighborhood approaches, then, the skill increases

with increasing scales because of their intrinsic definition:

these methods do not separate the skill by scale, but as-

sess the resolution for which, by smoothing, the wanted

skill is achieved.

Figure 8 shows the energy obtained by aggregating

multiple tiles for three of the geometric cases charac-

terized by forecast elliptic features of different size.

From the different ranges of the y axes, one notes that

the energy for the lower threshold (Fig. 8, left) is larger

than the energy for the higher threshold (Fig. 8, right),

since the energy is proportional to the number of grid

points exceeding the threshold.

Figures 8a and 8d show the energy of the geometric

case in which the forecast ellipse is rotated and displaced,

but its size is unchanged with respect to the reference

ellipse. The forecast and observation energies are iden-

tical; in fact, the energy describes the spectral structure of

the forecast and observation fields independently of the

FIG. 7. Intensity-scale skill score obtained by aggregating mul-

tiple tiles, for the geometric cases. Bars of different gray shades

correspond to different thresholds (mm). Segments at the bar ex-

tremities indicate the bootstrap 95% confidence intervals for the

aggregated tiles.
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features’ positions and/or their vertical versus hori-

zontal orientations. For both the forecast and obser-

vations, the largest energy identifies a medium- to

large-scale feature for the low threshold (32–64 grid

points, corresponding to the larger ellipse), and a small-

to medium-scale feature for the high threshold (16–32

grid points, corresponding to the small-scale core em-

bedded in the larger ellipse). Because of the energy in-

dependence from the feature positions and their x–y

orientation, all energy-based statistics for the two geo-

metric cases with forecast elliptic features of the same

size as the reference ellipse, but displaced (50 and 200

grid points to the east), exhibit the same behavior as this

illustrated case and are, therefore, not shown.

Figures 8b,e and 8c,f show the energies for the geo-

metric cases in which the ellipse sizes are set larger and

larger with respect to the reference (hereafter these are

referred to as the big and huge ellipses, respectively).

The larger feature sizes are evident in the distribution of

the energy: for the low threshold (Figs. 8b and 8c), the

largest amount of energy identifies a 128-gridpoint scale

feature for the big ellipse, and a 128–256–512-gridpoint

scale feature for the huge ellipse; for the high threshold

(Figs. 8e and 8f), the intense cell embedded in the less

intense ellipse corresponds to large energy amounts at

the scale of 32–64 grid points for the big ellipse, and at

the scale of 64 grid points for the huge ellipse. Note

that for both the low and high thresholds, the largest

amount of energy (in absolute value) is associated

with the largest (huge) ellipse (Figs. 8c and 8f).

Figure 9 shows the forecast and observation energy

differences obtained by tiling for the geometric cases

shown in Fig. 8. As expected, the geometric case with

a forecast ellipse of the same size as the reference ellipse

exhibits no bias (Fig. 9a). On the other hand, the geo-

metric cases with larger forecast ellipses exhibit positive

bias in correspondence to the scales of the overforecast

features (128 and 32–64 grid points in Fig. 9b; 128–256–

512 and 64 grid points in Fig. 9c), for the corresponding

threshold. Note that for the geometric cases the bias is

assessed by the energy difference, instead of the relative

difference. This is done to illustrate an example in which

the bias is proportional to the energy magnitude; a

comparison of Figs. 9b and 9c shows that the largest bias

is associated with the largest feature. The energy dif-

ference is appropriate for verification applications that

FIG. 8. Forecast (light gray bars) and observed (dark gray bars) energy for thresholds of (left) 12.7 and (right)

25.4 mm obtained by aggregating multiple tiles, for geometric cases with forecast elliptic features of different sizes.

Segments at the bar extremities indicate the bootstrap 95% confidence intervals for the aggregated tiles.
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do not want to excessively penalize small biases associ-

ated with small energies, but want to focus on events

with large energies (and large biases).

Figure 10 shows energy percentages (En%) obtained

by tiling for the geometric cases shown in Fig. 8. The

energy percentages are normalized and, therefore, pro-

vide information on how the energy is distributed across

the scales independently of the energy magnitude; the

bars of all the panels of Fig. 10 (as opposed to Fig. 8)

therefore have similar ranges, despite being associated

with different thresholds and/or features of different

sizes. For each case study, and for each of the two

thresholds, the En% identifies the same features that are

identified by the energy. The differences between the

forecast and reference feature sizes (i.e., the differences

in the scale structure of the fields) are then detected by

the shifts of the energy percentages: for the low threshold,

the En% shifts from medium to large and very large

scales (Figs. 10b and 10c); for the high threshold, the

En% shifts from small to medium scales (Figs. 10e and

10f). For the case with the forecast elliptic feature that

is identical to the reference ellipse, the energy per-

centages exhibit no shift (Figs. 10a and 10d). The scale

shifts are more evident when comparing the forecast

and observation energy percentages, rather than their

energies (cf. Figs. 8 and 10).

The En% difference shown in Fig. 11 enables us to

assess the scale structure independently of the bias as-

sociated with the thresholds (the bias has, in fact, been

removed by the normalization of the energy percent-

ages). The case with the forecast elliptic feature that is

identical to the reference ellipse has ‘‘perfect’’ scale

structure (Fig. 11a), whereas the cases with larger fea-

tures (Figs. 11b and 11c) overforecast the large scales.

The medium scales (associated with the reference el-

lipse) are correspondingly underforecast. As expected,

the under- and overforecasting for the high threshold

occurs at smaller scales than for the low threshold (since

the high threshold corresponds to the smaller ellipses),

and the overforecast for the huge ellipse (Fig. 11c)

stretches to larger scales than for the big ellipse (Fig. 11b).

Note that, for a given threshold, the En% differences on

the different scales add up to zero. In fact, each over-

forecast for a particular scale is compensated by the un-

derforecasting at other scales.

Figure 12 shows the energy obtained for a single tile,

for the three geometric cases with forecast elliptic fea-

tures identical to the reference ellipse. For both high and

low thresholds, the energies differ only because of the

positions of the ellipses with respect to the discrete

wavelet transform support. Tiling removes this effect, so

that both the reference ellipse and the three forecast

ellipses exhibit the same energy (e.g., Figs. 8a and 8d). In

general, all the IS verification statistics are sensitive to

the discreteness of the wavelet support, and tiling and

aggregation help to reduce the wavelet discrete support

effects. Note that, for the geometric cases illustrated,

these effects are not completely eliminated. As an ex-

ample, the energy percentages for the geometric case

with the forecast elliptic feature identical to the refer-

ence ellipse are not identical (Figs. 10a and 10d), and

their difference departs slightly from zero (Fig. 11a).

However, these differences are not significant and their

95% confidence intervals always include zero. To en-

tirely eliminate the effects due to the discrete wavelet

support, tiling should be performed for each grid point

of the dyadic domain (512 3 512 tiles). However, this

process is computationally very expensive; a tiling cov-

erage that eliminates with statistical significance the

discrete wavelet support effects is usually reached with

randomly positioned tiles equal in number to the size of

the dyadic domain (e.g., 512 tiles for a 512 3 512 grid

FIG. 9. Energy difference obtained by aggregating multiple tiles,

for geometric cases with forecast elliptic features of different sizes.

Bars of different gray shades correspond to different thresholds

(mm). Segments at the bar extremities indicate the bootstrap 95%

confidence intervals for the aggregated tiles.
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point domain), since in this way all the positions of the

dyadic support in the x and y directions are expected to

be covered. For the geometric cases illustrated, fewer

tiles are used (201 tiles) to meet the algorithm constraints

of preserving the ellipses’ relative positions while not

cutting through them. In fact, each tile must entirely

contain the rectangle of size Dx 3 Dy that embeds both

reference and forecast ellipses. Therefore, tiling can be

performed with a maximum of (512 2 Dx) 3 (512 2 Dy)

tiles. The square root of this product provides, then, an

estimate of the number of tiles randomly positioned in

order to cover all of the x and y positions of the dyadic

support. Note that 201 tiles are sufficient for obtaining

(with 95% confidence) identical energies and zero en-

ergy difference for the geometric cases with ellipses of

the same size. For more realistic precipitation fields,

fewer tiles are needed to eliminate the discrete wavelet

support effects (see sections 3b and 3c). This is possibly

due to the characteristics of the Haar wavelet filter,

which efficiently represents highly discontinuous (noisy)

on and off fields, such as precipitation fields (Casati et al.

2004).

b. The synthetically perturbed case

Figure 13 shows the IS skill score obtained by tiling for

the case study synthetically perturbed in order to have

different displacement errors. The synthetically per-

turbed case is shown in Fig. 3 of Ahijevych et al. (2009),

and the displacements errors correspond to the first five

cases listed in Table 4 and described in section 3 of

Ahijevych et al. (2009). As the displacement gets larger,

the no-skill to skill transition scale (i.e., the scale at which

the IS skill score crosses the zero line, from negative to

positive) shifts toward larger scales. The IS skill score

again exhibits sensitivity to the displacement error. Note

also that the shift of the skill-transition scale is important

for small thresholds (e.g., Figs. 13a and 13b), whereas

high thresholds are less affected (e.g., Fig. 13d). This is

partially due to the spatial and physical coherence of the

precipitation features and the intrinsic relationship that

exists between the feature intensity and scale, so that

low thresholds are often associated with large-scale

features, whereas high thresholds are associated with

small-scale cells. In fact, for the largest threshold the

FIG. 10. Forecast (light gray bars) and observed (dark gray bars) energy percentage for thresholds of (left) 12.7 and

(right) 25.4 mm obtained by tiling, for geometric cases with forecast elliptic features of different sizes. Segments at

the bar extremities indicate the bootstrap 95% confidence intervals for the aggregated tiles.
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skill remains almost identical, since the largest threshold

is associated with very small-scale events (of the size of

a grid point or two), which are already completely mis-

matched in position, from the first small displacement.

On the other hand, as the displacement gets larger, the

reference and displaced features become more and

more separated, and therefore it is not only the intense

small-scale cells but also the low-intensity large-scale

features that no longer overlap; the skill is then affected

more and more for smaller and smaller thresholds. Note

that in general for high thresholds the positive skill on

large scales is due to the correct zeros.

Figures 14b and 14c show the IS skill scores obtained

by tiling for the case study synthetically perturbed to

have different intensities, in addition to a displacement

error (last two cases listed in Table 4 of Ahijevych et al.

2009). These are compared to the IS skill scores for the

perturbed case with the same displacement but no bias

(the third case in Table 4 of Ahijevych et al. 2009), which

is shown in Fig. 14a. When precipitation intensities are

multiplied by a factor of 1.5 (cf. Fig. 14a and 14b), only

the highest thresholds (and small scales) are visibly af-

fected. The extent of the precipitation features exceed-

ing these thresholds is slightly larger; therefore, the

negative skill associated with the smallest scale shifts to

larger scales, and the no-skill to skill transition scale also

shifts to a larger scale. On the other hand, when all the

precipitation intensities are reduced by the same small

quantity (cf. Figs. 14a and 14c), the small thresholds (and

large scales) are the most affected. The extent of the

large-scale features is reduced, and with it the overlap of

the forecast and reference is reduced; therefore, the IS

skill score (for small thresholds and large scales) gets

worse.

The sensitivity of the IS skill score to the intensity bias

error is marginal; the differences between these case

studies are better captured by the energy bias. Figure 15

shows the energy obtained by tiling for the reference

feature (Fig. 15a), the precipitation feature displaced

(Fig. 15b), and the precipitation field synthetically per-

turbed to have different intensities (Figs. 15c and 15d),

in addition to the displacement. Figures 16b–d show the

energy relative difference associated with these cases,

obtained again by tiling. By multiplying the precipitation

intensities by a factor of 1.5, the energy for high thresh-

olds is mostly augmented. This can barely be seen when

comparing Figs. 15a and 15c, since the energy for the

large thresholds is very small. On the other hand, this

overforecasting for high thresholds is well captured by

the energy relative difference shown in Fig. 16c. Sub-

traction of the same small quantity from all the pre-

cipitation values reduces the energy, for all thresholds

and scales. This is already noticeable by comparing Figs.

15a and 15d, and it is clearly shown by the energy rela-

tive difference in Fig. 16d.

The energy relative differences shown in Fig. 16b,

comparing the energy of the reference feature (Fig. 15a)

and the displaced feature (Fig. 15b), are due solely to

the different positions of the precipitation features with

respect to the discrete wavelet transform support (i.e.,

the sensitivity of the statistics to the discrete wavelet

support), and should be zero. Only five tiles, with origins

at columns 1, 22, 45, 67, and 90, have been aggregated for

this case study: the effects of the discrete wavelet sup-

port on the statistics are already dramatically reduced,

and the energy relative difference is much less noisy and

closer to zero than that for single tiles (Fig. 16a). Using

40 randomly positioned tiles removes, at the 95% con-

fidence level, the effects due to the position of the dis-

crete wavelet support (not shown). The same five tiles

used for the perturbed case were then chosen for tiling

the spring 2005 case studies (section 3c). In fact, the

FIG. 11. Energy percentage differences obtained by tiling, for

geometric cases with forecast elliptic features of different sizes.

Bars of different gray shades correspond to different thresholds

(mm). Segments at the bar extremities indicate the bootstrap 95%

confidence intervals for the aggregated tiles.
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perturbed case is obtained from one of the spring 2005

cases; therefore, these have similar spatial characteris-

tics. Moreover, the statistics for the spring 2005 datasets

are obtained by aggregating nine case studies, for which

the positions of the precipitation features with respect to

the wavelet support vary case by case. Therefore, five

tiles are expected to be sufficient (9 cases 3 5 tiles 5 45 .

40 randomly positioned tiles), for the spring 2005 case

studies, to eliminate the effects due to the discreteness of

the wavelet dyadic support.

c. The spring 2005 dataset

The IS statistics for nine case studies from the SPC/

NSSL 2005 Spring Program dataset (Kain et al. 2008;

Ahijevych et al. 2009, section 4) are aggregated as de-

scribed in section 2c. For each of the IS statistics, 95%

confidence intervals are evaluated by bootstrapping, in

order to quantify the uncertainty associated with their

variability within the cases. The 24-h lead-time precipi-

tation forecasts produced by three models [2- and 4-km

simulations of the NCAR version of the Weather Research

and Forecast model (WRF2 and WRF4 NCAR) and 4-km

simulations of the NCEP version of the WRF model

(WRF4 NCEP)] are verified against the stage II radar-

based analysis (STG2). All of the 1-h accumulation pre-

cipitation fields were remapped onto the stage II 4-km

resolution grid. As described in section 2d, all cases are

initially padded. Cropping, interpolating, and tiling are then

performed, and the aggregated IS statistics are evaluated.

Figure 17 shows the aggregated IS skill score obtained

by tiling, for the nine spring 2005 case studies, for the

WRF2 and WRF4 NCAR and WRF4 NCEP models.

All of the models exhibit similar behavior: small scales

and large thresholds exhibit the worse skill, large scales

exhibit positive skill, and the no-skill to skill transition

scale corresponds to 32 grid points (128 km). Skill is

usually not expected at the model grid resolution, or

even up to 2–4 times this resolution. However, this large

no-skill to skill transition scale indicates that all three

models represent frontal features well (features larger

than 100 km), but perform poorly for convective events

(features smaller than 100 km). Small scales and low

FIG. 12. Forecast and observed energy for thresholds of (top) 12.7 and (bottom) 25.4 mm

obtained for a single tile, for the geometric cases with identical elliptic features (symbols). The

box plots indicate the distributions of the forecast and observed energies for all of the 201

individual tiles, for the three case studies illustrated.
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thresholds exhibit slightly positive skill due, as for the

geometric cases, to a small error associated with few

events. The sole significant difference between the models

is the poorer skill of the WRF4 NCEP model for high

thresholds at the smallest scale (i.e., the 4-km model

resolution scale). However, when considering increasing

scales, already at resolutions equal to 2 or 4 times the

model resolution, the skill levels of the three models are

no longer significantly different. The behavior and dif-

ferences between the three models shown by the cropped

and interpolated cases are similar and are, therefore, not

shown.

To illustrate the sensitivity of the IS statistics to the

approach chosen to tackle the dyadic domain con-

straints, the IS skill scores obtained for the aggregated

spring 2005 cases by cropping, interpolating, and tiling

are compared. Figure 18 shows the aggregated IS skill

scores for the WRF4 NCAR model. Results obtained

for the WRF2 and WRF4 NCEP models are similar and

are therefore not shown. When comparing cropping

versus interpolating (cf. Figs. 18a and 18b) and cropping

versus tiling (cf. Figs. 18a and 18c), for small thresholds

and medium to large scales (in correspondence to the

no-skill to skill transition scale), the cropped cases ex-

hibit less skill. This is due to the removal of large areas of

zeros and small values, by cropping both the forecast

and the analysis, which correspond to correct rejec-

tions. When comparing interpolating versus cropping

(cf. Figs. 18a and 18b) and interpolating versus tiling (cf.

Figs. 18b and 18c), the skill levels on small scales are

affected, since the nearest-neighbor interpolation re-

moves isolated columns from the forecast and analysis

fields, thus affecting the smallest scales. The interpolated

cases on these small scales exhibit less skill than the

cropped and tiled cases; however, such a loss of skill is

purely due to random chance, since the effects of the

FIG. 13. Intensity-scale skill score obtained by tiling for the synthetically perturbed case with displacement error. The statistics for the

different cases are plotted with different symbols and lines, as indicated in the bottom-right legend in (d). Different gray shades corre-

spond to different precipitation thresholds (mm), as indicated in the top-left legend in each panel. Segments indicate the bootstrap 95%

confidence intervals for the aggregated tiles.
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nearest-neighbor interpolation depend on which values

are removed by the interpolation process itself. On the

other hand, if a linear interpolation to a denser grid

would be applied, one would expect to slightly increase

the skill for small scales. In fact, such an interpolation

would reduce the variability of the forecast and obser-

vation fields, and therefore the small-scale error would

be reduced. The IS skill score produced by tiling seems

in this case to be the most robust and reliable, since tiling

does not involve any change of the original precipitation

field.

The energy and energy relative difference are evalu-

ated in order to assess the bias intensity-scale dependency

for the spring 2005 dataset. Figure 19 shows the energy

FIG. 14. Intensity-scale skill score obtained by tiling for the synthetically perturbed case with

bias error. Bars of different gray shades correspond to increasing precipitation thresholds

(mm), as indicated in the legend. Segments at the bar extremities indicate the bootstrap 95%

confidence intervals for the aggregated tiles.
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obtained by tiling, for the stage II analysis and for the

WRF2 and WRF4 NCAR and WRF4 NCEP models, for

the aggregated case studies. The energy behavior pattern

is similar to that for the synthetically perturbed case

(section 3b; see Fig. 15): small thresholds are associated

with larger energies (many events exceed the threshold)

and large thresholds are associated with less energy.

Scales of 8–16–32–64 grid points exhibit the largest en-

ergies, indicating that features ranging from 32 to 256 km

characterize the fields. Figure 20 shows the energy rela-

tive difference obtained by tiling for the WRF2 and

WRF4 NCAR and WRF4 NCEP models versus the stage

II analysis, for the aggregated spring 2005 cases. All of the

models tend to overforecast, especially for thresholds be-

tween 2 and 16 mm. However, the WRF4 NCEP model

overforecasts more than the other two models, for all

thresholds and scales. The WRF2 NCAR model under-

forecasts intense events, whereas the WRF4 NCAR model

reproduces the intense events well. The comparison of the

three models performed by analyzing the energy and en-

ergy relative difference for the cropped and interpolated

cases led to similar results and is, therefore, not shown.

The sensitivity of the energy to the strategy chosen to

tackle the dyadic domain constraints is also analyzed.

Figure 21 shows the energy relative difference for the

aggregated spring 2005 case studies, while comparing

cropped versus interpolated cases, interpolated versus

tiled cases, and tiled versus cropped cases. The statistics

are illustrated for the WRF4 NCAR model. Results

obtained for the WRF2 NCAR and WRF4 NCEP

models are similar and are therefore not shown. When

comparing cropping versus interpolating (Fig. 21a), the

energy of the cropped fields is larger than those in-

terpolated (especially at large scales), since cropping

removes large regions with zeros and small values,

whereas interpolating removes zeros and nonzeros (i.e.,

also large) values. When comparing interpolating versus

tiling (Fig. 21b), the tiled fields exhibit larger energy

FIG. 15. Energy obtained by tiling for the synthetically perturbed case with bias error. Bars of different gray shades correspond to

different scales (in grid points), as indicated in the legend. Segments at the bar extremities indicate the bootstrap 95% confidence intervals

for the aggregated tiles.
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FIG. 16. Energy relative difference obtained for (a) each single tile and (b)–(d) by tiling, for

the synthetically perturbed case with bias error. Bars of different gray shades correspond to

different scales (in grid points), as indicated in the legend. Segments at the bar extremities

indicate the bootstrap 95% confidence intervals for the aggregated tiles. Symbols in (a) cor-

respond to the values of the energy relative difference for the five tiles, with tile origins in-

dicated in the legend.
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than the interpolated fields; this is possibly due to an

oversampling of the center of the domain, where the

precipitation features are mainly concentrated, per-

formed by the tiling procedure. When comparing tiling

versus cropping (Fig. 21c), the energy of the cropped

fields is slightly larger than the tiled fields; this shows

that the removal of zeros and small values performed by

the cropping has a larger effect than the oversampling

performed by the tiling. These results, however, are not

significantly different. The energy evaluated for the in-

terpolated fields seems in this case to be the most reli-

able, since the nearest-neighbor interpolation randomly

removes zero and nonzero precipitation values and,

thus, does not artificially enhance the energy.

FIG. 17. Aggregated IS skill score obtained by tiling the domain for (a) WRF2 NCAR, (b)

WRF4 NCAR, and (c) WRF4 NCEP for the spring 2005 cases. Bars of different gray shades

correspond to increasing precipitation thresholds (mm), as indicated in the legend. Segments at

the bar extremities indicate the bootstrap 95% confidence intervals for the aggregated cases.
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The energy percentages and scale structures for the

three models are similar (not shown). As is already

evident from the energy relative difference (Fig. 20) for

small thresholds (0.25–2 mm), all three models under-

forecast features at the scale of 8–32 grid points. These

underforecast features correspond to round features

(most probably caused by spurious radar echoes) vis-

ible in the stage II analysis but not present in any of the

forecasts. For larger thresholds (4–16 mm), all three

models exhibit underforecasting of small scales and

a corresponding overforecasting of large scales (less so

for the WRF4 NCEP model), which may be due to

FIG. 18. Aggregated IS skill score for the WRF4 NCAR model obtained by (a) cropping the

domain, (b) interpolating the values to a dyadic domain, and (c) tiling the domain for the spring

2005 cases. Bars of different gray shades correspond to increasing precipitation thresholds

(mm), as indicated in the legend. Segments at the bar extremities indicate the bootstrap 95%

confidence intervals for the aggregated cases.
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a smoothing of the precipitation fields, which is com-

monly performed by NWP systems.

4. Conclusions

The IS technique introduced by Casati et al. (2004) is

revisited and improved. Recalibration, which was for-

merly applied to separate bias from skill assessment, is

no longer performed and the IS skill score for biased

forecasts is evaluated. Energy and the proportion of

energy at each spatial scale are then introduced to assess

the bias on different scales and the spatial scale structure

of the precipitation fields. Note that energy and energy

percentages inform the user about the differences be-

tween the forecast and observation marginal distribu-

tions, whereas the IS skill score pertains to their joint

distribution. Aggregation of the IS statistics for multi-

ple cases is performed and confidence intervals are pro-

vided by bootstrapping. The bootstrapped samples were

compiled from different cases and different dyadic tile

positions.

The IS verification has been applied to the Inter-

comparison of Spatial Forecast Verification Methods

dataset. The IS skill score assesses the skill for different

precipitation intensities and on different spatial scales,

separately. The geometric cases show that the spatial

scales of the error are attributed to both the size of the

features and their displacement. The geometric and

synthetically perturbed cases show that the IS verifi-

cation statistics are sensitive to displacements and

bias errors. Moreover, precipitation fields are charac-

terized by the presence of physically coherent features:

intense precipitation events are in general character-

ized by small scales (e.g., convection), whereas large-

scale events are usually associated with stratiform

precipitation and moderate values. The NIMROD and

synthetically perturbed cases show that this intrinsic

relationship existing between the feature intensity and

FIG. 19. Energy obtained by tiling the domain for (a) STG2, (b) WRF2 and (c) WRF4 NCAR, and (d) WRF4 NCEP for the aggregated

spring 2005 cases. Bars of different gray shades correspond to different scales (in grid points), as indicated in the legend. Segments at the

bar extremities indicate the bootstrap 95% confidence intervals for the aggregated cases.
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scale is well captured by the IS statistics. The energy

percentages enable the user to objectively analyze the

scale structure of the fields and the scale-intensity re-

lationship due to the spatial coherence of the precip-

itation features.

The IS skill score associated with the geometric cases

enables us to highlight the differences between scale-

separation and neighborhood verification techniques.

In fact, on small scales the IS skill score is positive (no

small-scale events are present and, therefore, little error

is associated with these scales), whereas for neigh-

borhood techniques (e.g., see Mittermaier and Roberts

2010) the skill on small scales is negative (the neigh-

borhood size is too small to embed and smooth out the

FIG. 20. Energy relative difference obtained by tiling the domain for (a) WRF2 and

(b) WRF4 NCAR and (c) WRF4 NCEP for the aggregated spring 2005 cases. Bars of different

gray shades correspond to different scales (in grid points), as indicated in the legend. Segments

at the bar extremities indicate the bootstrap 95% confidence intervals for the aggregated cases.
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displacement of the ellipses). This follows from the

different definition of ‘‘scale’’ for the scale-separation

and neighborhood approaches. The IS scale components

are defined by a single-band filter: the IS approach is

therefore capable of isolating scales associated with dif-

ferent wavelengths, and of assessing the forecast error

and skill for each individual scale, separately. On the

other hand, for neighborhood verification techniques the

scales are defined by a low-bandpass filter (smoothing): as

the size of the neighborhood (scale) is increased, the

forecast and observations are subject to a filtering process

where the exact space–time matching requirements be-

come more and more relaxed. Neighborhood verifica-

tion approaches, therefore, by definition exhibit larger

FIG. 21. Energy relative difference for the WRF4 NCAR model when comparing (a) cropping

vs interpolation, (b) interpolation vs tiling, and (c) tiling vs cropping for the aggregated spring

2005 cases. Bars of different gray shades correspond to different scales (in grid points), as in-

dicated in the legend. Segments at the bar extremities indicate the bootstrap 95% confidence

intervals for the aggregated cases.
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skill for increasing scales; these approaches do not

aim to separate the scales but assess the neighborhood

size (or critical smoothing scale) above which skill is

achieved. Scale-separation and neighborhood verifica-

tion approaches provide different information about the

scale dependency of the forecast skill (see also Gilleland

et al. 2009; Ebert 2009; Casati et al. 2008).

Aggregated IS skill scores for the SPC/NSSL 2005

Spring Program dataset do not show significant differ-

ences in the skill levels of the three models assessed:

WRF2 and WFR4 NCAR and WRF4 NCEP. All three

models exhibit positive skill on large scales, with the

worst skill found on small scales and at large thresholds.

The no-skill to skill transition scale occurs at the 32-

gridpoint (128 km) scale, indicating good representation

of synoptic scales but poor performance for convective

precipitation. The energy bias reveals that all three

models overforecast medium to large scales, and that

the WRF4 NCEP model overforecasts more remark-

ably than the other two models, for all scales and

thresholds. To better visualize the differences between

the NWP performance, the differences in the IS verifi-

cation statistics for the different models can be evaluated,

and their significance can be assessed by bootstrapping

(not shown).

The systematic pattern of the IS skill score obtained

for the spring 2005 dataset, showing negative skill for

small scales and positive skill for large scales, is quite

typical. Note that this pattern is associated with the

typical characteristics of gridded quantitative precip-

itation forecasts; in fact, precipitation forecasts usually

represent well large-scale weather phenomena (e.g.,

frontal systems), but perform poorly for the less pre-

dictable, intense small-scale events, and tend to be

noisy and nonskillful at the forecast resolution scale.

Note also that for the neighborhood verification ap-

proaches this systematic pattern (i.e., larger skill with

increasing smoothing scale) is expected, whereas for

the IS skill score this is not the case. In fact, the IS skill

score can also exhibit different patterns of behavior. As

an example, the geometric cases have positive skill for

small scales, due to the small error associated with these

scales, and the skill becomes negative for the larger

scales, associated with the feature size and displacement

errors. Moreover, the IS skill score is capable of iden-

tifying specific scale-dependent errors related to in-

dividual cases; as an example, the displacement of the

storm for the NIMROD case study is detected by the

negative skill at the 160-km scale, whereas the no-skill to

skill transition scale for the NIMROD forecasts is 40 km

(Casati et al. 2004). When performing a verification of

several forecasts, it is often desirable to identify in-

dividual forecasts that stand out because of a particu-

larly good or poor performance; this can be done, as an

example, by evaluating the difference between the IS

skill score for individual forecasts versus the aggregated

IS skill score. As an alternative, a variation of the IS skill

score could be defined, where the MSEu,l for the single

case is compared against the MSEu,l aggregated for all

forecasts.

The sensitivity of the IS statistics to the discrete nature

of the wavelet support has been analyzed. Tiling the

forecast domain with randomly displaced dyadic sup-

ports and aggregating the IS statistics associated with

each tile enables the user to virtually eliminate the ef-

fects due to the discrete wavelet support. The optimal

number of tiles to be used depends on the forecast spatial

characteristics and can be determined by sensitivity tests.

In this article, such an optimal number is estimated by

the minimum number of tiles needed to obtain energy

relative differences not significantly different from zero,

for forecasts and observations that are expected to have

identical energies. For precipitation fields, a small num-

ber of tiles is sufficient to eliminate the wavelet support

effects, whereas smoother fields need more tiling. This

is due to the characteristic square shape of the Haar

wavelets, which efficiently represents highly discontin-

uous and noisy fields, such as precipitation. When ag-

gregating cases from multiple model runs, the tiling

constraints are relaxed because the weather moves

across the spatial domain and features assume naturally

different positions with respect to the discrete wavelet

support.

Four different approaches addressing the dyadic do-

main constraint have been discussed: padding, cropping,

interpolating, and tiling. These approaches were com-

pared using the results obtained for the spring 2005

dataset aggregated statistics. Padding (cropping) can en-

hance (diminish) the IS skill score on medium to large

scales and small intensities because of the addition

(removal) of correct zeros (and small values). Inter-

polation changes the original field values and affects the

IS statistics on the smallest scales. Tiling can provide

slightly misrepresentative IS verification statistics, be-

cause of the oversampling of the center of the domain.

The differences between the results, however, are very

marginal, and the overall qualitative behavior of the IS

statistics does not change significantly depending on the

approach chosen. When aggregating multiple cases, the

choice of the approach to be used to tackle the dyadic

domain constraints should be based on the forecast

characteristics and verification purposes. On the other

hand, for single case studies, tiling provides the most

robust and reliable approach, since it smoothes the

effects due to the discrete wavelet support and is not

affected by any change in the original precipitation fields.
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An alternative approach to eliminate the effects due

to the position of the discrete wavelet support with re-

spect to the precipitation features could be to use con-

tinuous wavelet transforms (see van den Berg 2004,

chapter 2 and references therein) rather than discrete

wavelet transforms and tiling. In fact, continuous wavelet

transforms use continuously varying translation and di-

latation parameters; they are therefore shift invariant

and they diagnose the spectral components of the trans-

formed fields for continuously varying scales. Continuous

wavelets would then eliminate the dyadic support ef-

fects and enrich the diagnostic power of the IS statistics,

providing a continuous spectrum of scales. However

continuous wavelet transforms produce a redundant

representation of the transformed field, so that the or-

thogonality of the scale components and additive prop-

erties of the IS statistics (and their percentages) would be

lost. Future work could investigate such an alternative

approach, its characteristics, and implications.

The Intercomparison of Spatial Forecast Verification

Methods (Gilleland et al. 2009) has provided a great

opportunity to further develop the IS verification ap-

proach and to respond to some users’ needs. Moreover,

an new open source code for the evaluation of the IS

verification statistics is now available within the Mete-

orological Evaluation Toolkit (MET; available online at

http://www.dtcenter.org/met/users/), along with the one

already available in the verification package developed

by M. Pocernich (available online at http://cran.r-project.

org/web/packages/verification/) for the R statistical lan-

guage (http://www.R-project.org). A more widespread use

of the new spatial verification approaches is encouraged

and can help the verification approach developers to

better address user-relevant issues. More generally, the

intercomparison project has provided a common

framework to enhance our understanding and to com-

pare the capabilities of the new spatial verification

methods, which benefits both technique developers and

potential users. Metaverification intercomparisons

provide guidance for the users in selecting the appro-

priate technique that will provide specific information

on the forecast quality. Communication between the

developers and the user community is fundamental for

a more meaningful verification.
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